Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Radon-Isotop in die Falle gegangen

23.03.2009
Forscher der Arbeitsgruppen um Klaus Blaum vom Heidelberger Max-Planck-Institut für Kernphysik und Lutz Schweikhard von der Ernst-Moritz-Arndt-Universität Greifswald haben am CERN ein neues Isotop des Elements Radon entdeckt.

Erstmalig hat in diesem Fall die Methode der Präzisionsmassenspektrometrie in einer Penningfalle zum direkten Nachweis eines neuen instabilen Nuklids geführt. Zugleich konnten die Kernmassen von sechs weiteren neutronenreichen Radon-Isotopen erstmalig bestimmt werden.

Was für Chemiker das Periodensystem der Elemente, ist für Kernphysiker die Nuklidkarte, welche alle bekannten Atomkerne (Nuklide) darstellt - geordnet nach der Zahl ihrer Bestandteile, den Protonen und Neutronen. 3175 verschiedene Spezies kannten die Kernphysiker bisher; nun ist ein weiteres dazu gekommen: Das aktuell neutronenreichste Isotop des Elements Radon mit 86 Protonen und 143 Neutronen.

Unter Isotopen versteht man Nuklide des gleichen chemischen Elements, charakterisiert durch die Protonenzahl, mit unterschiedlicher Anzahl an Neutronen. Radon ist ein radioaktives Edelgas, dessen langlebigstes Isotop mit der Massenzahl 222 eine Halbwertszeit von knapp vier Tagen hat und durch Zerfall von Radium-226 entsteht. Dagegen beträgt die Halbwertszeit des neuen Isotops nur 12 Sekunden.

Die Besonderheit der Neuentdeckung liegt in ihrer Methode: Erstmals ist es einer internationalen Kollaboration am CERN unter der Federführung von Prof. Klaus Blaum vom Heidelberger Max-Planck-Institut für Kernphysik und Prof. Lutz Schweikhard von der Ernst-Moritz-Arndt-Universität Greifswald gelungen, ein neues Isotop durch Einfang in eine spezielle Falle für geladene Atome (Ionen) direkt nachzuweisen. In einer solchen "Penningfalle" lassen sich einzelne Ionen mittels elektrischer und magnetischer Felder über längere Zeit speichern und sehr präzise vermessen. So konnte die Masse des neuen Isotops wie auch der schon bekannten Nachbarisotope mit den Massenzahlen 223 bis 228 mit einer Genauigkeit von wenigen Millionstel Prozent bestimmt werden.

Die Erzeugung solcher in der Natur nicht vorkommenden Kerne erfolgt am Isotopenlabor ISOLDE des CERN durch Beschuss eines Urantargets mit hochenergetischen Protonen. Dabei können die Urankerne gespalten oder in kleinere Bruchstücke zertrümmert werden oder aber einige wenige Protonen und Neutronen abdampfen und so etwas leichtere Nuklide bilden. Diese stehen dann z. B. für die weitere Untersuchung am Penningfallen-Massenspektrometer ISOLTRAP zur Verfügung. Einmal pro Sekunde wird das Uran mit den Protonen bombardiert, wobei pro Schuss gut hundert Milliarden radioaktive Atomkerne verschiedener Sorte entstehen. Nur einige Zehntausend davon sind Radon-Isotope und vom gesuchten Radon-229 sind es nur einige Hundert. Nach Transport- und Einfang landen letztlich im Mittel nur ein paar wenige Exemplare in der Falle.

"Für einen publizierbaren Massenwert müssen wir einige Hundert bis Tausend Einzelmessungen vornehmen", erläutert Klaus Blaum, "und für das neue Isotop haben wir etwa einen Tag Messzeit gebraucht". Das ist nicht gerade lange im Vergleich zur Entwicklungsarbeit an dem Spektrometer, welches vor genau 20 Jahren von Jürgen Kluge (damals Johannes-Gutenberg-Universität Mainz, später Gesellschaft für Schwerionenforschung Darmstadt) initiiert wurde. Nun aber können die Forscher die Früchte ihrer langjährigen Arbeit ernten, was sich unter anderem in einer ansehnlichen Zahl neuerer Publikationen in angesehenen Fachzeitschriften niederschlägt. Auf die Entdeckung eines neuen Isotops sind die Wissenschaftler besonders stolz: "So etwas kommt nicht alle Tage vor! Es ist schon ein besonderes Ereignis, wenn man die Nuklidkarte um einen neuen Atomkern bereichern kann."

Kontakt:

Prof. Dr. Klaus Blaum
Max-Planck-Institut für Kernphysik, Heidelberg
Tel: 06221/516-851
Fax: 06221/516-852
E-Mail: klaus.blaum@mpi-hd.mpg.de
Prof. Dr. Lutz Schweikhard
Institut für Physik
Ernst-Moritz-Arndt-Universität Greifswald
Tel: 03834/86-4700
Fax: 03834/86-4701
E-Mail: lschweik@physik.uni-greifswald.de

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://link.aps.org/doi/10.1103/PhysRevLett.102.112501
http://www.mpi-hd.mpg.de/blaum/index.de.html
http://www6.physik.uni-greifswald.de/index.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien
17.01.2018 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Projekt "HorseVetMed": Forscher entwickeln innovatives Sensorsystem zur Tierdiagnostik

17.01.2018 | Agrar- Forstwissenschaften

Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt

17.01.2018 | Physik Astronomie

Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

17.01.2018 | Physik Astronomie