Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Quantencomputer-Konzept vorgeschlagen

07.08.2014

Ein Quantenphysik-Team der TU Wien entwickelte gemeinsam mit einer Forschungsgruppe aus Japan eine neue Architektur für einen Quantencomputer.

Der Quantencomputer ist so etwas wie der Heilige Gral der Quantentechnologie. Er wäre unvergleichlich viel leistungsfähiger als die klassischen Computer, mit denen wir heute arbeiten. Ein Forschungsteam der TU Wien schlägt nun gemeinsam mit einer Forschungsgruppe vom National Institute for Informatics in Tokyo eine neue Quantencomputer-Architektur aus winzigen Diamanten vor.


Ein neues Quantencomputer-Konzept wurde vorgestellt

TU Wien


Quanten-Operationen, die auf Stickstoffatomen in Diamant basieren, werden an der TU Wien bereits durchgeführt, weitere Experimente sind in Vorbereitung.

TU Wien

Für einen verlässlich arbeitenden Quantencomputer müssten Milliarden einzelne Quantensysteme verwendet werden, der Weg dorthin ist noch weit. Das Team ist allerdings überzeugt, dass die Elemente der nun vorgestellten Architektur besser als bisherige Quantencomputer-Ideen geeignet sind, miniaturisiert und in großer Anzahl auf einem Chip untergebracht zu werden. Experimente dazu sind an der TU Wien bereits geplant.

Zerbrechliche Quantenüberlagerungen

Seit Jahrzehnten wird an Konzepten gearbeitet, quantenmechanische Systeme für logische Berechnungen zu verwenden. „Ein Bit in einem gewöhnlichen Computer kann immer nur entweder den Wert null oder eins annehmen. In der Quantenphysik sind allerdings Überlagerungen verschiedener Zustände erlaubt – ein Quanten-Bit („QBit“) kann sich daher im Zustand null und gleichzeitig im Zustand eins befinden, wodurch sich fantastische Rechenkapazitäten ergeben würden“, erklärt Prof. Jörg Schmiedmayer vom Atominstitut der TU Wien.

Realisieren kann man solche Überlagerungszustände mit unterschiedlichen Systemen – etwa mit Ionen, die man in elektromagnetischen Fallen festhält oder mit supraleitenden Quanten-Bits. Die Architektur, die nun im Journal „Physical Review X “ vorgestellt wurde, ist eine andere:

In einem hauchdünnen Diamantplättchen wird an mehreren Stellen jeweils ein einzelnes Stickstoff-Atom eingebaut, dessen Spin verschiedene Zustände annehmen kann. Jedes Stickstoffatom wird in einem optischen Resonator, bestehend aus zwei Spiegeln, eingesperrt. Über Glasfaserleitungen kann man Photonen in Kontakt mit dem Quantensystem aus Spiegeln und Diamant bringen. So lässt sich der Quantenzustand des Systems manipulieren und auslesen, ohne dass die Quanteneigenschaften durch Dekohärenzeffekte im Diamant zerstört werden.

Realistische Quantencomputer-Konzepte brauchen Fehlerkorrektur

Jedes einzelne dieser Systeme aus Spiegeln, Diamant und eingebautem Stickstoff-Atom kann ein Quanten-Bit an Information tragen – also null, eins, oder eine beliebige Überlagerung davon. Doch ein solches Quanten-Bit ist extrem instabil. Damit die Information zuverlässig verarbeitet kann, braucht man spezielle Quantenfehlerkorrektur-Verfahren. „Verwendet man Fehlerkorrekturen, kommt man beim Speichern eines Quanten-Bits nicht mehr in einem einzelnen Quantenteilchen aus, man braucht eine komplizierte Architektur aus vielen miteinander verbundenen Systemen“, sagt Michael Trupke (TU Wien).

Das Forschungsteam berechnete, wie man die einzelnen Elemente aus Spiegeln und Diamanten mit Stickstoffatomen zu einem fehlerresistenten zweidimensionalen Quantensystem zusammenfügen könnte, einem sogenannten „topologisch geschützten Quantencomputer“. Nach den Berechnungen wären etwa 4,5 Milliarden dieser Quantensysteme nötig, um zum Beispiel den Algorithmus „Shor-2048“ auf dem Quantencomputer laufen zu lassen, mit dem Primfaktoren von 2048-Bit-Zahlen berechnet werden können.

Diese gewaltige Zahl an Quanten-Elementen ist bei allen Quantencomputer-Architekturen notwendig, egal ob man mit Ionenfallen, supraleitenden QBits oder mit Stickstoff-Spins in Diamanten arbeitet. „Bei unserer Architektur weiß man allerdings im Prinzip, wie man sie verkleinern kann. Sie hat ein großes Potenzial zur Miniaturisierung und Massenproduktion“, meint Michael Trupke. „Es gibt heute ganze Industriezweige, die mit Diamanten arbeiten, die Forschung schreitet hier rasch voran. Es gibt noch viele Probleme zu lösen, aber die Verschaltung von Stickstoff-Spins in Festkörpern zeigt zumindest einen Weg auf, der aus heutiger Sicht zum Quantencomputer führen könnte.“

Auch der Transistor war nur der Anfang

Trupke vergleicht die Situation der Quantencomputer-Forschung mit der frühen Computertechnik: „Als man die ersten Transistoren herstellte, konnte man sich auch noch nicht vorstellen, wie es je gelingen kann, Milliarden von ihnen auf einem Chip unterzubringen, und heute tragen wir solche Chips in der Hosentasche mit uns herum. Unsere Stickstoff-Spins in Diamant könnten eine ähnliche Rolle spielen wie die Transistoren in der klassischen Computertechnik.“

An der TU Wien arbeitet man nun daran, kleine Versionen dieser Architektur experimentell herzustellen. „Ein riesengroßer Vorteil für uns ist, dass es an der TU Wien eine ganze Reihe international angesehener Forschungsgruppen aus dem Materialtechnologie- und Quantenbereich gibt, mit denen wir zusammenarbeiten“, sagt Jörg Schmiedmayer. Am Institut für Angewandte Physik der TU Wien arbeitet Prof. Friedrich Aumayr daran, Stickstoffatome auf die gewünschte Weise in Diamanten einzubauen, Prof. Peter Mohn liefert mit Hilfe von Computersimulationen wichtige numerische Daten dazu. In Zusammenarbeit mit Prof. Ulrich Schmid werden am Zentrum für Mikro- und Nanostrukturen (ZMNS) der TU Wien die Resonatoren hergestellt, im Röntgenzentrum werden Materialuntersuchungen durchgeführt.

Auch wenn die Implementierung eines Algorithmus wie Shor-2048 noch in ferner Zukunft liegen dürfte – die Verschränkung von Bauelementen zu größeren Cluster-Zellen sollte in den nächsten Jahren bereits gelingen. „Letztlich kommt es darauf an, ob wir es schaffen, die Quantentechnologie in ein Zeitalter der Massenproduktion und Miniaturisierung zu führen“, sagt Jörg Schmiedmayer. „Ich sehe keine physikalischen Gesetze, die uns prinzipiell davon abhalten sollten.“

Rückfragehinweis:
Prof. Jörg Schmiedmayer
Atominstitut
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141801
hannes-joerg.schmiedmayer@tuwien.ac.at

Dr. Michael Trupke
Atominstitut
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141872
michael.trupke@tuwien.ac.at

Weitere Informationen:

http://journals.aps.org/prx/abstract/10.1103/PhysRevX.4.031022 Originalpublikation in PRX
http://arxiv.org/pdf/1309.0023v2.pdf Hintergrundpaper zur verwendeten Quantentechnologie

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten