Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Quantencomputer-Konzept vorgeschlagen

07.08.2014

Ein Quantenphysik-Team der TU Wien entwickelte gemeinsam mit einer Forschungsgruppe aus Japan eine neue Architektur für einen Quantencomputer.

Der Quantencomputer ist so etwas wie der Heilige Gral der Quantentechnologie. Er wäre unvergleichlich viel leistungsfähiger als die klassischen Computer, mit denen wir heute arbeiten. Ein Forschungsteam der TU Wien schlägt nun gemeinsam mit einer Forschungsgruppe vom National Institute for Informatics in Tokyo eine neue Quantencomputer-Architektur aus winzigen Diamanten vor.


Ein neues Quantencomputer-Konzept wurde vorgestellt

TU Wien


Quanten-Operationen, die auf Stickstoffatomen in Diamant basieren, werden an der TU Wien bereits durchgeführt, weitere Experimente sind in Vorbereitung.

TU Wien

Für einen verlässlich arbeitenden Quantencomputer müssten Milliarden einzelne Quantensysteme verwendet werden, der Weg dorthin ist noch weit. Das Team ist allerdings überzeugt, dass die Elemente der nun vorgestellten Architektur besser als bisherige Quantencomputer-Ideen geeignet sind, miniaturisiert und in großer Anzahl auf einem Chip untergebracht zu werden. Experimente dazu sind an der TU Wien bereits geplant.

Zerbrechliche Quantenüberlagerungen

Seit Jahrzehnten wird an Konzepten gearbeitet, quantenmechanische Systeme für logische Berechnungen zu verwenden. „Ein Bit in einem gewöhnlichen Computer kann immer nur entweder den Wert null oder eins annehmen. In der Quantenphysik sind allerdings Überlagerungen verschiedener Zustände erlaubt – ein Quanten-Bit („QBit“) kann sich daher im Zustand null und gleichzeitig im Zustand eins befinden, wodurch sich fantastische Rechenkapazitäten ergeben würden“, erklärt Prof. Jörg Schmiedmayer vom Atominstitut der TU Wien.

Realisieren kann man solche Überlagerungszustände mit unterschiedlichen Systemen – etwa mit Ionen, die man in elektromagnetischen Fallen festhält oder mit supraleitenden Quanten-Bits. Die Architektur, die nun im Journal „Physical Review X “ vorgestellt wurde, ist eine andere:

In einem hauchdünnen Diamantplättchen wird an mehreren Stellen jeweils ein einzelnes Stickstoff-Atom eingebaut, dessen Spin verschiedene Zustände annehmen kann. Jedes Stickstoffatom wird in einem optischen Resonator, bestehend aus zwei Spiegeln, eingesperrt. Über Glasfaserleitungen kann man Photonen in Kontakt mit dem Quantensystem aus Spiegeln und Diamant bringen. So lässt sich der Quantenzustand des Systems manipulieren und auslesen, ohne dass die Quanteneigenschaften durch Dekohärenzeffekte im Diamant zerstört werden.

Realistische Quantencomputer-Konzepte brauchen Fehlerkorrektur

Jedes einzelne dieser Systeme aus Spiegeln, Diamant und eingebautem Stickstoff-Atom kann ein Quanten-Bit an Information tragen – also null, eins, oder eine beliebige Überlagerung davon. Doch ein solches Quanten-Bit ist extrem instabil. Damit die Information zuverlässig verarbeitet kann, braucht man spezielle Quantenfehlerkorrektur-Verfahren. „Verwendet man Fehlerkorrekturen, kommt man beim Speichern eines Quanten-Bits nicht mehr in einem einzelnen Quantenteilchen aus, man braucht eine komplizierte Architektur aus vielen miteinander verbundenen Systemen“, sagt Michael Trupke (TU Wien).

Das Forschungsteam berechnete, wie man die einzelnen Elemente aus Spiegeln und Diamanten mit Stickstoffatomen zu einem fehlerresistenten zweidimensionalen Quantensystem zusammenfügen könnte, einem sogenannten „topologisch geschützten Quantencomputer“. Nach den Berechnungen wären etwa 4,5 Milliarden dieser Quantensysteme nötig, um zum Beispiel den Algorithmus „Shor-2048“ auf dem Quantencomputer laufen zu lassen, mit dem Primfaktoren von 2048-Bit-Zahlen berechnet werden können.

Diese gewaltige Zahl an Quanten-Elementen ist bei allen Quantencomputer-Architekturen notwendig, egal ob man mit Ionenfallen, supraleitenden QBits oder mit Stickstoff-Spins in Diamanten arbeitet. „Bei unserer Architektur weiß man allerdings im Prinzip, wie man sie verkleinern kann. Sie hat ein großes Potenzial zur Miniaturisierung und Massenproduktion“, meint Michael Trupke. „Es gibt heute ganze Industriezweige, die mit Diamanten arbeiten, die Forschung schreitet hier rasch voran. Es gibt noch viele Probleme zu lösen, aber die Verschaltung von Stickstoff-Spins in Festkörpern zeigt zumindest einen Weg auf, der aus heutiger Sicht zum Quantencomputer führen könnte.“

Auch der Transistor war nur der Anfang

Trupke vergleicht die Situation der Quantencomputer-Forschung mit der frühen Computertechnik: „Als man die ersten Transistoren herstellte, konnte man sich auch noch nicht vorstellen, wie es je gelingen kann, Milliarden von ihnen auf einem Chip unterzubringen, und heute tragen wir solche Chips in der Hosentasche mit uns herum. Unsere Stickstoff-Spins in Diamant könnten eine ähnliche Rolle spielen wie die Transistoren in der klassischen Computertechnik.“

An der TU Wien arbeitet man nun daran, kleine Versionen dieser Architektur experimentell herzustellen. „Ein riesengroßer Vorteil für uns ist, dass es an der TU Wien eine ganze Reihe international angesehener Forschungsgruppen aus dem Materialtechnologie- und Quantenbereich gibt, mit denen wir zusammenarbeiten“, sagt Jörg Schmiedmayer. Am Institut für Angewandte Physik der TU Wien arbeitet Prof. Friedrich Aumayr daran, Stickstoffatome auf die gewünschte Weise in Diamanten einzubauen, Prof. Peter Mohn liefert mit Hilfe von Computersimulationen wichtige numerische Daten dazu. In Zusammenarbeit mit Prof. Ulrich Schmid werden am Zentrum für Mikro- und Nanostrukturen (ZMNS) der TU Wien die Resonatoren hergestellt, im Röntgenzentrum werden Materialuntersuchungen durchgeführt.

Auch wenn die Implementierung eines Algorithmus wie Shor-2048 noch in ferner Zukunft liegen dürfte – die Verschränkung von Bauelementen zu größeren Cluster-Zellen sollte in den nächsten Jahren bereits gelingen. „Letztlich kommt es darauf an, ob wir es schaffen, die Quantentechnologie in ein Zeitalter der Massenproduktion und Miniaturisierung zu führen“, sagt Jörg Schmiedmayer. „Ich sehe keine physikalischen Gesetze, die uns prinzipiell davon abhalten sollten.“

Rückfragehinweis:
Prof. Jörg Schmiedmayer
Atominstitut
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141801
hannes-joerg.schmiedmayer@tuwien.ac.at

Dr. Michael Trupke
Atominstitut
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141872
michael.trupke@tuwien.ac.at

Weitere Informationen:

http://journals.aps.org/prx/abstract/10.1103/PhysRevX.4.031022 Originalpublikation in PRX
http://arxiv.org/pdf/1309.0023v2.pdf Hintergrundpaper zur verwendeten Quantentechnologie

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie