Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues „Pendel“ für die Ytterbium-Uhr

01.03.2012
Ein nur schwer anzuregender Übergang im Ytterbium-Ion ermöglicht eine extrem hohe Genauigkeit

Je schneller eine Uhr tickt, desto genauer kann sie sein. Weil Lichtwellen schneller schwingen als Mikrowellen, können optische Uhren genauer sein als die Cäsium-Atomuhren, die derzeit weltweit die Zeit bestimmen.


Die Ionenfalle der Ytterbium-Uhr in der PTB.
Foto: PTB

Die Physikalisch-Technische Bundesanstalt (PTB) arbeitet gleich an mehreren solcher optischen Uhren. Das Modell mit einem einzelnen, in einer Ionenfalle gefangenen Ytterbium-Ion bekommt jetzt einen weiteren Genauigkeitsschub. In der PTB ist es gelungen, einen quantenmechanisch stark „verbotenen“ Übergang dieses Ions anzuregen und vor allem auch extrem genau zu messen. Die darauf basierende optische Uhr ist auf 17 Stellen hinter dem Komma genau. Die Ergebnisse sind in der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters veröffentlicht.

Optische Übergänge sind das moderne Pendant zum Pendel einer mechanischen Uhr. Bei Atomuhren ist das „Pendel“ jene Strahlung, die den Übergang zwischen zwei atomaren Zuständen unterschiedlicher Energie anregt. Sie liegt bei Cäsium-Atomuhren im Mikrowellenbereich, bei optischen Uhren im Bereich von Laserlicht, sodass deren „Pendel“ also schneller schwingt und die optischen Uhren folgerichtig als Atomuhren der Zukunft gelten.

Bei dem Experiment in der PTB haben die Wissenschaftler sich einem besonderen verbotenen Übergang gewidmet. „Verboten“ bedeutet in der Quantenmechanik, dass der Sprung zwischen den beiden Energiezuständen des Atoms wegen der Erhaltung von Symmetrie und Drehimpuls nahezu unmöglich ist. Der angeregte Zustand kann dann sehr langlebig sein: Im hier untersuchten Fall beträgt die Lebensdauer des sogenannten F-Zustands im Ytterbium-Ion Yb+ etwa sechs Jahre. Wegen dieser langen Lebensdauer lässt sich bei der Laseranregung dieses Zustands eine äußerst schmale Resonanz beobachten, die in ihrer Linienbreite nur von der Qualität des verwendeten Lasers abhängt. Eine schmale Resonanzlinie ist eine wichtige Voraussetzung für eine genaue optische Uhr. Am britischen National Physical Laboratory (NPL), dem Schwesterinstitut der PTB, ist bereits 1997 erstmalig die Laseranregung dieses Yb+-F-Zustands vom Grundzustand gelungen. Da der Übergang jedoch stark verboten ist, wird zu seiner Anregung eine relativ hohe Laserintensität benötigt. Dies stört die Elektronenstruktur des Ions insgesamt und führt zu einer Verschiebung der Resonanzfrequenz, sodass eine darauf basierende Atomuhr einen von der Laserintensität abhängigen Gang aufweisen würde.

In der PTB konnte jetzt gezeigt werden, dass sich durch abwechselnde Anregung des Ions mit zwei unterschiedlichen Laserintensitäten die unbeeinflusste Resonanzfrequenz sehr genau bestimmen lässt. Dadurch wurde es möglich, andere in Atomuhren häufig auftretende Frequenzverschiebungen – z. B. durch elektrische Felder oder die Wärmestrahlung der Umgebung – zu untersuchen. Es zeigte sich, dass diese im Fall des Yb+-F-Zustands unerwartet klein sind, was auf die besondere elektronische Struktur des Zustands zurückzuführen ist. Das bildet einen entscheidenden Vorteil für die Weiterentwicklung dieser Atomuhr. Bei den Experimenten in der PTB wurde die relative Unsicherheit der Yb+-Frequenz mit 7 • 10–17 bestimmt. Dies entspricht einer Unsicherheit der Atomuhr von nur etwa 30 Sekunden über das Alter des Universums.

Beide Gruppen in NPL und PTB haben die Frequenz des Yb+-Übergangs mit ihren Cäsium-Uhren gemessen. Die Ergebnisse stimmen im Rahmen der Unsicherheiten (1 • 10–15 bzw. 8 • 10–16), die im Wesentlichen von den Cäsium-Uhren bestimmt werden, überein. In einem kürzlich bewilligten Forschungsprojekt im European Metrology Research Programme werden beide Institute mit weiteren europäischen Partnern in Zukunft noch intensiver bei der Entwicklung dieser optischen Uhr zusammenarbeiten. Beim Yb+-Ion ist von besonderem Interesse, dass es gleich zwei für optische Uhren geeignete Übergänge besitzt: Weniger stark verboten, aber ebenfalls sehr präzise lässt sich die Anregung des D-Niveaus bei 436 nm Wellenlänge nutzen. Damit ergibt sich die Möglichkeit, durch Frequenzvergleiche der beiden Übergänge in einem Ion die Genauigkeit der optischen Uhr zu untersuchen, ohne Bezug auf eine Cäsium-Uhr nehmen zu müssen.

es/ptb

Wissenschaftliche Veröffentlichungen
PTB-Experiment:
N. Huntemann et al.: High-accuracy optical clock based on the octupole transition in 171Yb+.

Phys. Rev. Lett. 108, 090801 (2012)

NPL-Experiment:
S. A. King et al.: Absolute frequency measurement of the 2S1/2 – 2F7/2 electric octupole transition in a single ion of 171Yb+ with 10-15 fractional uncertainty. New J. Phys. 14, 013045 (2012)
Ansprechpartner
Dr. Ekkehard Peik, PTB-Fachbereich 4.4 Zeit und Frequenz,
Tel. (0531) 592-4400, E-Mail: ekkehard.peik@ptb.de

Erika Schow | idw
Weitere Informationen:
http://www.ptb.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten