Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Mikroskop entziffert Schaltkreise des Auges

10.03.2011
Ganglionzellen können dank Amakrinzellen Richtungen erkennen

Damit das Auge die Eigenschaften optischer Reize effizient an das Gehirn weiterleiten kann, werden diese Informationen bereits im Auge vorverarbeitet. Manche so genannte Ganglionzellen, die die Sehinformation über den Sehnerv ins Gehirn leiten, reagieren beispielsweise nur auf Lichtreize, die sich in eine bestimmte Richtung bewegen.


Aus seriellen elektronenmikroskopischen Oberflächenbildern rekonstruierte Zellen und Synapsen: Eine einzelne „starburst“ Amakrinzelle (gelb, mit ihrem synaptischen Verdickungen) und zwei richtungsemfindliche Ganglienzellen (grün). Trotz erheblichem Dendritenüberlapp mit beiden Zellen knüpft sie ausschließlich Verbindungen (magenta) zur rechten Ganglienzelle. Kevin Briggman

Diese Richtungsselektivität wird durch hemmende Interneurone erzeugt, die mit ihren Synapsen die Aktivität der Ganglionzellen beeinflussen. Wissenschaftler vom Max-Planck-Institut für medizinische Forschung in Heidelberg haben nun mittels einer neuen, dort entwickelten Mikroskopiemethode herausgefunden, dass die Synapsen zwischen Ganglionzellen und Interneuronen nach ganz speziellen Regeln verteilt sind. Mit einer Ganglienzelle verbinden sich nur solche Dendriten-Fortsätze, die entgegengesetzt der bevorzugten Richtung der Ganglionzelle vom Zellkörper der Amakrinzelle ausgehen.

Die Sinneszellen in der Netzhaut des Wirbeltier-Auges wandeln Lichtreize in elektrische Signale um und leiten sie über nachgeschaltete so genannte Interneurone zu den Ganglionzellen und von dort ins Gehirn. Die Interneurone sind so miteinander verschaltet, dass die einzelnen Ganglionzellen Sehinformation von einem kreisförmigen Ausschnitt des Sehfeldes erhalten – dem so genannten rezeptiven Feld. Manche Ganglionzellen werden beispielsweise nur aktiviert, wenn Licht auf das Zentrum ihres rezeptiven Feldes fällt, die Peripherie dagegen dunkel bleibt (ON-Zellen). Bei anderen ist es genau umgekehrt (OFF-Zellen). Darüber hinaus gibt es Ganglionzellen, die von Licht aktiviert werden, das in einer bestimmten Richtung über ihr rezeptives Feld streicht. Im Gegensatz zu dieser Vorzugsrichtung hemmt eine Bewegung in entgegen gesetzter Richtung (Nullrichtung).

Eine wichtige Rolle für diese Richtungsselektivität spielen „Starburst“-Amakrinzellen, die die Aktivität der Ganglionzellen über hemmende synaptische Verbindungen modulieren. Vor einigen Jahren hatte dieselbe Arbeitsgruppe am Heidelberger Max-Planck-Institut gezeigt, dass Starburst-Amakrinzellen von bewegten Reizen aktiviert werden. Dabei reagiert jeder Ast des runden Dendritenbaums auf solche Reize bevorzugt, die sich vom Zellkörper entlang nach außen bewegen. Bewegungen von außen nach innen wiederum hemmen ihre Aktivität. Ihre Dendriten fungieren dabei im Zentralbereich rund um den Zellkörper klassisch als Empfänger von elektrischen Signalen, im Randbereich dagegen auch als Sender – sie entsprechen dort also dem Axon einer Nervenzelle. Ob sie den Ganglionzellen ihre Richtungsselektivität verleihen oder ob die Ganglionzellen ihre Vorzugsrichtung aus anderen Faktoren „errechnen“, war bislang unklar.

Die Max-Planck-Forscher Kevin Briggman, Moritz Helmstaedter und Winfried Denk haben nun entdeckt, dass die Synapsen zwischen Ganglionzellen und Starburst-Amakrinzellen asymmetrisch verteilt sind – obwohl die Zellen selbst symmetrisch sind. Und zwar so, dass von der Ganglionzelle aus gesehen die mit ihr verbundenen Starburstzell-Dendriten entgegen der bevorzugten Bewegungsrichtung eines Lichtreizes laufen. „Ganglionzellen bevorzugen Amakrinzellen, deren Dendriten entlang der Nullrichtung verlaufen“, sagt Winfried Denk vom Heidelberger Max-Planck-Institut.

Früheren Studien von Winfried Denk und seiner Arbeitsgruppe zufolge sind dafür die elektrischen Eigenschaften der sternförmig vom Zellkörper abzweigenden Dendriten der Amakrinzellen entscheidend. Sie werden demnach vom Zentral- zum Randbereich hin immer leichter erregbar, so dass Reize in dieser Richtung bevorzugt weiter geleitet werden. Hemmende Einflüsse zwischen benachbarten Amakrinzellen, die so genannte laterale Hemmung, sind für diesen Mechanismus nicht notwendig. „Eine Ganglionzelle kann also zwischen Bewegungen unterschiedlicher Richtung unterscheiden, indem sie ausschließlich mit bestimmten Starburst-Amakrinzell-Dendriten Verbindungen eingeht – nämlich denen, die mit ihren hemmenden Synapsen verhindern, dass die Ganglionzelle in Nullrichtung aktiviert wird. Das sind genau die Amakrinzellen, deren Dendriten in dieser Orientierung verlaufen“, erklärt Winfried Denk.

Analyse von Funktion und Struktur

Möglich wurden dieser Befund durch eine Kombination zweier unterschiedlicher Mikroskopie-Methoden: Mit einem Zwei-Photonen-Fluoreszenz-Mikroskop bestimmten die Wissenschaftler zunächst die bevorzugte Bewegungsrichtung der Ganglionzellen. Ein Kalzium-sensitiver Fluoreszenz-Farbstoff zeigte an, bei welchen Lichtreizen Kalzium in die Zellen einströmt, was die elektrische Aktivität der Zellen signalisiert.

Als nächstes maßen sie den exakten Verlauf aller Dendriten dieser Ganglionzellen sowie die der Amakrinzellen mit Hilfe eines neuen Elektronenmikroskopie-Verfahrens, der seriellen Oberflächenabbildung. Bei diesem Verfahren wird eine Volumenabbildung erstellt, indem wiederholt die Oberfläche eines Gewebepräparats mit dem Elektronenstrahl eines Raster-Elektronenmikroskops abgetastet wird, wobei zwischen den Abtastvorgängen jeweils ein dünnes Scheibchen der Oberfläche mit einem sehr scharfen Diamantmesser „abgehobelt“ wird. Diese Scheibchen sind dünner als ein 25 Nanometer, gerade mal ein tausendstel der Dicke eine menschlichen Haares.

Die hohe dreidimensionale Auflösung dieses Verfahrens erlaubt die gerade der Netzhaut des Auges dicht gepackten verästelten Fortsätzen der Nervenzellen zu verfolgen und die Synapsen zwischen ihnen eindeutig zu identifizieren. Die vollständige Automatisierung der Bildaufnahme macht es möglich über Wochen hinweg Datensätze mit tausenden oder gar zehntausenden von Schnitten aufzunehmen, „während man selbst z.B. im Urlaub oder auf Dienstreise ist“ sagt Winfried Denk. „Daher ist nun erstmals möglich, winzige Zellstrukturen mit hoher Auflösung in einem größeren Gewebestück zu beobachten. Dieses Verfahren wird deshalb künftig unverzichtbar sein, um Verschaltungsmuster auch in anderen Regionen des Nervensystems zu aufzuklären.“

Ansprechpartner
Prof. Dr. Winfried Denk
Max-Planck-Institut für medizinische Forschung, Heidelberg
Telefon: +49 6221 486-335
Fax: +49 6221 486-325
E-Mail: denk@mpimf-heidelberg.mpg.de
Originalveröffentlichung:
Kevin L Briggman, Moritz Helmstaedter, Winfried Denk
Wiring specificity in the direction-selectivity circuit of the retina
Nature, 10. März 2011

Prof. Dr. Winfried Denk | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de
http://www.mpg.de/1198735/richtungssehen_retina

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie