Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Licht im Terahertz-Spektrum

23.06.2015

Supercomputer-Simulationen weisen den Weg zu kompakter Terahertz-Quelle mit einstellbarer Wellenlänge

Der Terahertz-Bereich ist einer der letzten Abschnitte im elektromagnetischen Spektrum, von den Radiowellen über optische Anwendungen bis hin zur Röntgenstrahlung, der im Alltag noch kaum genutzt wird. Die Erzeugung der Strahlung ist schwierig und bislang nur eingeschränkt möglich. Dabei bietet sie zahlreiche Anwendungsmöglichkeiten.


Propagation of the terahertz waves in ionized gas in a magnetic field of 178 tesla.

Forschungszentrum Jülich


Konventionelle THz-Quelle (oben) und neue Quelle (unten)

Forschungszentrum Jülich

Jülicher Wissenschaftler haben nun im Fachmagazin Physical Review Letters gemeinsam mit internationalen Partnern ein neues Konzept vorgestellt, mit dem sich die Möglichkeiten von noch in der Entwicklung befindlichen Terahertz-Quellen mit Kurzpulslasern erweitern lassen. Eine wichtige Rolle spielten dabei Berechnungen auf dem Jülicher Superrechner JUQUEEN.

Mithilfe aufwendiger Simulationen konnten die Wissenschaftler zeigen, wie man Wellenlänge und Polarisation der erzeugten Terahertz-Strahlung durch ein starkes äußeres Magnetfelds gezielt beeinflussen kann. Terahertzwellen sind im elektromagnetischen Spektrum zwischen den Mikrowellen und der Infrarotstrahlung angesiedelt.

Der Bereich von 0,1 und 30 THz, die "Terahertz-Lücke", befindet sich damit genau zwischen der Elektronik und der Optik, und wird weder durch herkömmliche elektrische noch optische Quellen, also Antennen und Lampen, abgedeckt. Dabei ist die Strahlung aufgrund ihrer ungewöhnlichen Eigenschaft für vielfältige Einsatzzwecke interessant: einerseits durchdringt sie Textilien und Kunststoffe, andererseits wird sie aber auch von vielen Materialien auf charakteristische Art und Weise absorbiert.

Das Anwendungsspektrum reicht von der schonenden Krebsfrüherkennung über die Nahrungsmittelkontrolle bis hin zu Körperscannern und ultraschnellen WLAN-Verbindungen.

Zur Erzeugung der Terahertzwellen sind seit der Jahrtausendwende erste Terahertz-Quellen als vergleichsweise kompakte und kostengünstige Alternative zu großen Teilchenbeschleunigern im Einsatz. Sie verwenden sogenannte Femtosekundenlaser, die ihre gesamte Energie auf einen ultrakurzen Lichtpuls konzentrieren. "Man kann sich diese Technik so ähnlich wie einen Transformator vorstellen, der die hohe Frequenz der eingehenden Laserstrahlen in den niedrigeren Terahertz-Frequenzbereich übersetzt", erklärt Prof. Paul Gibbon vom Jülich Supercomputing Centre (JSC).

Zwei ultrakurze Laserpulse unterschiedlicher Frequenz werden bei dieser Technik, die derzeit noch weiter entwickelt wird, auf ein Gas-Target geschossen. Das Gas wird ionisiert, Elektronen werden freigesetzt. So werden aus den wesentlich schnelleren Laserfrequenzen langsamer schwingende Terahertzwellen.

"Die starken elektromagnetischen Felder der beiden Laser versetzen die Elektronen in Schwingung; allerdings nicht rein harmonisch, also im 'Gleichtakt', sondern etwas asymmetrisch, was über einen Laserzyklus gemittelt zu einer Art Gleichstrom führt", ergänzt Humboldt-Stipendiat Dr. Wei-Min Wang, ebenfalls tätig am Jülich Supercomputing Centre (JSC). Andernfalls lägen die Frequenzen immer noch im höheren Bereich der Laser. "Auf diese Weise entsteht ein Terahertz-Puls, der gerade einmal einen Zyklus lang andauert – und als Welle nach außen abstrahlt", so Wang.

Gemeinsam mit Forschern der Universität Strathclyde und des Institute of Physics in Peking, das der Chinesischen Akademie der Wissenschaften angehört, haben die beiden Forscher nun ein neues Konzept vorgestellt, das die Erzeugung von Terahertz-Strahlung mit regelbarer Wellenlänge und über mehrere Zyklen hinweg mit schmaler Bandbreite ermöglicht - Charakteristiken, die einem Laser im optischen Bereich ähnlich sind.

Es sieht ein starkes Magnetfeld vor, das von außen an das ionisierte Gas angelegt wird und die freien Elektronen im Plasma wie in einem Teilchenbeschleuniger in eine Kreisbahn zwingt. Diese Kreisbewegung bestimmt sowohl die Wellenlänge als auch die Schwingungsrichtung der erzeugten Strahlung. Deren optische Eigenschaften lassen sich somit gezielt über die Stärke des Magnetfelds anpassen, was die Tür öffnen könnte für eine Vielzahl neuer Anwendungen.

"Insbesondere spektroskopische oder vielmehr abbildende Verfahren – zum Beispiel zur Untersuchung der Dynamik großer Biomoleküle wie der DNA – könnten von einer derartigen Strahlungsquelle profitieren, die eine bessere Zeit- und Raumauflösung bietet", erläutert Wei-Min Wang. Die praktische Umsetzung ist allerdings nicht trivial, eine experimentelle Umsetzung steht noch aus.

"Das Konzept setzt eine Kombination von leistungsstarken Lasern und Magnetfeldern von über 100 Tesla voraus. Das ist technisch schon sehr anspruchsvoll, aber durchaus machbar auf diesen Raum- und Zeitskalen", schätzt Paul Gibbon. Die Wissenschaftler nutzten aufwendige Simulationsrechnungen auf einem der schnellsten Superrechner Europas, dem Jülicher Supercomputer JUQUEEN, um die Eigenschaften der neuen Terahertz-Quelle zu erforschen.

Originalpublikation:
Physical Review Letters: http://journals.aps.org/prl/accepted/c7072Y5aOc317b5cc2ad3d92772845f7c33fc3382
(Abstract)
http://dx.doi.org/10.1103/PhysRevLett.114.253901

Ansprechpartner:
Prof. Paul Gibbon, Jülich Supercomputing Centre (JSC)
Tel. +49 2461 61-1499
E-Mail: p.gibbon@fz-juelich.de

Dr. Wei-Min Wang
Tel. +49 2461 61-96448
E-Mail: w.wang@fz-juelich.de

Pressekontakt:
Tobias Schlößer
Tel. +49 2461 61-4771
E-Mail: t.schloesser@fz-juelich.de

Erhard Zeiss
Tel. +49 2461 61-1841
E-Mail: e.zeiss@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/EN/2015/15-06-23prl-te...
http://www.fz-juelich.de/ias/jsc/EN/AboutUs/Organisation/ComputationalScience/Si...

Marcel Bülow | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Gravitationswellen als Sensor für Dunkle Materie
06.12.2016 | Max-Planck-Institut für Kernphysik

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rückgang großer fruchtfressender Vögel bedroht Tropenwälder

07.12.2016 | Biowissenschaften Chemie

Wenn das Handy heimlich zuhört: Abwehr ungewollten Audiotrackings durch akustische Cookies

07.12.2016 | Informationstechnologie

Weiterbildung zu statistischen Methoden in der Versuchsplanung und -auswertung

06.12.2016 | Seminare Workshops