Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Licht am Ende des Tunnels

17.10.2011
Ein internationales Wissenschaftler-Team hat die Energie infraroter Laserpulse mit einem Nanotrichter so konzentriert, dass damit ultrakurze, extrem ultraviolette Lichtpulse erzeugt wurden, die sich 75 Millionen Mal in der Sekunde wiederholten.

Wer in der Küche Flüssigkeiten ohne sie zu verschütten umfüllen will, der weiß einen Trichter zu schätzen. Doch nicht nur beim Kochen sind Trichter nützliche Utensilien, auch Licht kann mit Trichtern gebündelt werden. Allerdings müssen die Trichter dafür bis zu 10.000-mal kleiner sein.


Abb. 1: Schema zur Erzeugung von EUV Licht durch den Nanotrichter. Infrarotes Laserlicht (in rot dargestellt) wird in den mit Xenon (grün dargestellte Teilchen) gefüllten Nanotrichter eingestrahlt, von dem hier die untere Hälfte gezeigt ist. Die Oberflächen-Plasmonen-Polaritonen Felder (blaue Wellenstruktur) konzentrieren sich nahe der Spitze. Extrem- Ultraviolettes Licht (in violett dargestellt) wird mittels der verstärkten Felder in Xe generiert und verlässt den Trichter durch die schmale Öffnung. Das infrarote Licht kann die schmale Öffnung nicht passieren und wird zurückgeworfen. Graphik: Christian Hackenberger

Einem internationalen Forscherteam vom Korea Advanced Institute of Science and Technology (KAIST) in Daejeon (Korea), dem Max-Planck-Institut für Quantenoptik (MPQ) in Garching (Deutschland) und der Georgia State University (GSU) in Atlanta (USA) ist es nun gelungen, die Energie infraroter Laserpulse in einem Nanotrichter so zu bündeln, dass damit Lichtblitze im extremen ultravioletten Spektralbereich erzeugt werden können. Die Blitze, die sich 75 Millionen Mal pro Sekunde wiederholten, dauerten nur wenige Femtosekunden. Die neue Technologie könnte künftig helfen, die Bewegungen von Elektronen mit höchster räumlicher und zeitlicher Auflösung zu erfassen (Nature Photonics, 16.10.2011).

Licht ist wandelbar. Seine Wellenlängen können sich verändern, wenn sie auf Materie treffen. Dabei sind sowohl das Material wie auch die Form des Materials entscheidend. Mit einem Nanotrichter aus Silber hat nun ein internationales Forscherteam vom Korea Advanced Institute of Science and Technology (KAIST), dem Max-Planck Institut für Quantenoptik (MPQ) und der Georgia-State University (GSU) Lichtwellen modifiziert. Die Wissenschaftler wandelten dabei Femtosekunden-Laserpulse vom infraroten Spektrum in extrem ultraviolette Femtosekunden-Lichtblitze um. Kurz gepulstes ultraviolettes Licht (EUV) wird in der Laserphysik verwendet, um das Innenleben von Atomen und Molekülen zu erkunden. Eine Femtosekunde dauert dabei ein Millionstel einer Milliardstel Sekunde.

Infrarotes Licht (IR) kann zu Wellenlängen im EUV-Spektralbereich durch einen Prozess, der als Hohe-Harmonischen Erzeugung bekannt ist, konvertiert werden: Man setzt Atome extrem starken elektrischen Feldern von IR-Laserpulsen aus. Die Felder müssen eben so stark sein wie die Stärke der Felder, die das Atom zusammenhalten. Erst dann können Elektronen aus den Atomen herausgelöst und anschließend mit voller Kraft wieder in Richtung des Atoms beschleunigt werden. Dabei entsteht die sehr energiereiche Strahlung im EUV-Spektrum.

Um die notwendigen elektrischen Felder zur Produktion des EUV-Lichts zu erreichen, hat das Forscherteam dieses Prinzip mit einem Nanotrichter kombiniert. Mit ihm wird das elektrische Feld des Lichtes konzentriert. Damit haben die Forscher eine lichtstarke EUV-Quelle für Wellenlängen bis zu 20 Nanometer gebaut. Diese Lichtquelle verfügt über eine bisher nicht erreichte Wiederholungsrate: Die nur wenige Femtosekunden dauernden EUV-Lichtblitze leuchten dabei 75 Millionen Mal in der Sekunde auf.

Herzstück des Versuchs war ein winziger, einige Mikrometer langer, leicht elliptischer Trichter aus Silber, dessen schmale Öffnung nur rund 100 Nanometer breit ist (siehe Abb. 1). Gefüllt war der Trichter mit Xenon-Edelgasatomen. In den breiteren Teil des Trichters schickten die Forscher die infraroten Laserpulse. Die Lichtpulse wanderten durch den Trichter in Richtung seiner winzigen Öffnung. Während ihrer Reise bewirkten die elektromagnetischen Felder der Lichtpulse Dichteschwankungen der Elektronen an den Innenseiten des Trichters. Das heißt: Ein kurzer Abschnitt an den Metallwänden war positiv geladen, der nächste wieder negativ. Dadurch bildeten sich entlang der Innenseite des Trichters neue, elektromagnetische Felder aus, die Oberflächen-Plasmonen-Polaritonen genannt werden. Die Oberflächen-Plasmonen-Polaritonen wandern bis zur Spitze des Trichters, wobei die konische Form des Trichters eine Konzentration mit einer Erhöhung ihrer Feldstärke bewirkt. „Das Feld innerhalb des Trichters wird dabei einige hundertmal stärker als das Feld des eingestrahlten Laserlichtes und bewirkt so die Erzeugung von EUV-Licht in dem Xenongas“, erläutert Prof. Mark Stockman von der GSU.

Der Nanofilter hat noch eine weitere Funktion. Sein winziger Durchlass dient als „Türsteher“ für Licht-Wellenlängen. Nicht jede Öffnung ist für Licht passierbar. Ist die Öffnung kleiner als eine halbe Wellenlänge, bleibt es auf der anderen Seite dunkel. Die 100 Nanometer große Öffnung des Trichters ließ daher kein einfallendes infrarotes Licht bei 800 Nanometer durch. Die erzeugten EUV Pulse mit Wellenlängen bis hinunter zu 20 Nanometer passieren dagegen die Öffnung problemlos. „Der Trichter wirkt zusätzlich als effizienter Wellenlängenfilter, an dessen Spitze nur das EUV Licht austritt“, erklärt Prof. Seung-Woo Kim vom KAIST, an dem die Experimente durchgeführt wurden.

„Extrem-Ultraviolette Lichtpulse sind aufgrund ihrer kurzen Wellenlänge und potentiell kurzen Pulsdauer, die den Attosekunden Bereich erreichen kann, ein wichtiges Werkzeug bei der Erforschung von Elektronenbewegungen in Atomen, Molekülen und Festkörpern“, erläutert Seung-Woo Kim weiter. Elektronen bewegen sich innerhalb von Attosekunden (eine Attosekunde ist ein Milliardstel einer Milliardstel Sekunde). Wenn man sie aufzeichnen will, muss man ebenso kurze Lichtblitze verwenden. Attosekunden-Lichtblitze sind heute ein gängiges Werkzeug für die Erforschung von Elektronen. Jedoch lassen sie sich in der Regel mit der gängigen Technik nur einige tausendmal in der Sekunde wiederholen. Das ändert sich mit dem Nanotrichter. „Wir vermuten, dass die insgesamt einige Femtosekunden dauernde Lichtblitze aus Zügen von Attosekunden Pulsen bestehen“, führt Matthias Kling, Gruppenleiter am MPQ, aus. „Mit diesen Pulszügen sollten erstmals Experimente mit einer Attosekunden-Zeitauflösung bei extrem hoher Wiederholrate möglich sein.“

Die Wiederholrate ist entscheidend z.B. bei der Anwendung der EUV-Pulse für die Elektronenspektroskopie an Oberflächen. Elektronen stoßen sich gegenseitig aufgrund der Coulombkräfte ab. Dies macht es teils in Experimenten nötig, dass nur ein Elektron pro Laserschuss erzeugt wird. Bei niedriger Wiederholrate wären dann lange Aufnahmezeiten nötig, um eine entsprechende Auflösung zu erreichen. „Um Experimente mit hoher räumlicher und zeitlicher Auflösung innerhalb kurzer Zeit durchzuführen, wird eine hohe Wiederholrate benötigt“, erläutert Kling. Die geschickte Kombination aus Lasertechnik und Nanotechnologie könnte künftig helfen, Filme ultraschneller Elektronenbewegungen auf Oberflächen mit bisher unerreichter zeitlicher und räumlicher Auflösung im Attosekunden-Nanometer-Bereich aufzunehmen. [Thorsten Naeser]

Originalveröffentlichung:
In-Yong Park, Seungchul Kim, Joonhee Choi, Dong-Hyub Lee, Young-Jin Kim, Matthias F. Kling, Mark I. Stockman & Seung-Woo Kim
Plasmonic generation of ultrashort extreme-ultraviolet light pulses
Nature Photonics, 16.10.2011, Doi: 10.1038/NPHOTON.2011.258
Zusätzliches Material zur Attosekunden-Physik:
http://www.attoworld.de
Weitere Informationen erhalten Sie von:
Prof. Seung-Woo Kim
Department of Mechanical Engineering
Korea Advanced Institute of Science and Technology
Science Town, Daejeon 305-701, South Korea
Tel: +82-42-869-3001, 3217
Fax: +82-42-869-3210
E-mail: swk@kaist.ac.kr
Website: http://pem.kaist.ac.kr/
Prof. Dr. Matthias Kling
Max-Planck-Institut für Quantenoptik
Max Planck Research Group „Attosecond Imaging“
Hans-Kopfermann-Str. 1, 85748 Garching, Germany
Tel: +49-89-32905-234
Fax: +49-89-32905-649
E-Mail: matthias.kling@mpq.mpg.de
Website: http://www.attoworld.de/kling-group/
Prof. Mark Stockman
Department of Physics and Astronomy
Georgia State University
29 Peachtree Center Avenue, Science Annex, Suite 400
Atlanta, GA 30302, USA
Tel: +1-678-457-4739
Fax: +1-404-413-6025
E-mail: mstockman@gsu.edu
Website: http://www.phy-astr.gsu.edu/stockman
Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Tel.: +49 - 89 / 32905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nährstoffhaushalt einer neuentdeckten “Todeszone” im Indischen Ozean auf der Kippe

06.12.2016 | Geowissenschaften

Entschlüsselung von Kommunikationswegen zwischen Tumor- und Immunzellen beim Eierstockkrebs

06.12.2016 | Medizin Gesundheit

Bioabbaubare Polymer-Beschichtung für Implantate

06.12.2016 | Materialwissenschaften