Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues vom legendären Kohlenstoffkern: Forscherteam entdeckt die Struktur des „Hoyle-Zustands“

17.12.2012
Ein Schnappschuss gibt Einblick in die Elemententstehung

Ein internationales Forscherteam mit Beteiligung der Ruhr-Universität Bochum, der Rheinischen Friedrich-Wilhelms-Universität Bonn und der North Carolina State University hat im vergangenen Jahr erstmals den legendären Kohlenstoffkern berechnet und damit das Element nachgewiesen, das alles Leben auf der Erde ermöglicht.

Jetzt berichten die Wissenschaftler über einen weiteren Durchbruch bei der Erforschung des sogenannten Hoyle-Zustands von Kohlenstoff-12: Auf einem „Schnappschuss“ einer Computersimulation ist förmlich zu sehen, wie sich Partikel zusammenschließen, um das Element zu bilden. Aus der Grafik ergibt sich eine Struktur, die wie ein gebeugter Arm aussieht. Die neuen Erkenntnisse der Forscher basieren auf Simulationen am Jülich Supercomputing Centre und erscheinen in „Physical Review Letters“.

Über den Bergpass …

Der Hoyle-Zustand ist eine energiereiche Form des Kohlenstoffkerns. Er ist der Bergpass, über den man von einem Tal ins andere gelangt: von drei Kernen des Gases Helium zum sehr viel größeren Kohlenstoffkern. Diese Verschmelzungsreaktion findet im heißen Inneren schwerer Sterne statt. Gäbe es den Hoyle-Zustand nicht, hätten im Weltall nur sehr wenig Kohlenstoff oder andere höhere Elemente wie Sauerstoff, Stickstoff und Eisen entstehen können. Ohne diese Art von Kohlenstoffkern wäre daher vermutlich auch kein Leben möglich gewesen. Prof. Dr. Ulf-G. Meißner vom Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn, Prof. Dr. Evgeny Epelbaum und Dr. Hermann Krebs vom Institut für Theoretische Physik II der RUB und Prof. Dean Lee von der North Carolina State University gelang es 2011, den seit 1954 bekannten Hoyle-Zustand zu berechnen.
Darstellung auf einem numerischen Gitter

Kohlenstoff-12 kann nur existieren, wenn sich drei Alpha-Teilchen (oder Helium-4-Kerne) auf eine ganz bestimmte Weise zusammenschließen. Die deutschen und amerikanischen Forscher bestätigten die Existenz dieses Hoyle-Zustands mit Hilfe eines numerischen Gitters, das es ihnen ermöglichte zu simulieren, wie die Protonen und Neutronen zusammenwirken. Doch die Forscher wollten außerdem herausfinden, wie die Nukleonen (die Protonen und Neutronen im Inneren eines Atomkerns) im Kern von Kohlenstoff-12 angeordnet sind. Dies würde ihnen erlauben, die Struktur des Hoyle-Zustandes zu „sehen“. Mit Hilfe des gleichen Gitters stellten die Forscher nun zusammen mit Dr. Timo Lähde vom Forschungszentrum Jülich fest, dass die sechs Protonen und sechs Neutronen von Kohlenstoff-12 drei „Alpha-Cluster“ mit jeweils vier Nukleonen bilden. Bei geringer Energie neigten die Alpha-Cluster dazu, in einer kompakten dreieckigen Formation zusammen zu klumpen. Doch im Hoyle-Zustand, einem angeregten Zustand mit höherer Energie, schließen sich die drei Alpha-Cluster zu einer Struktur zusammen, die einem gebeugten Arm ähnelt.

Entdeckung wirft neue Fragen auf

„Es ist interessant, dass für den Hoyle-Zustand die bevorzugte Teilchenanordnung nicht in einer geraden Kette zu bestehen scheint“, so Prof. Dean Lee. „Eine Biegung in der Kette scheint erforderlich zu sein. Diese Arbeit führt uns zu der Frage, welche anderen Kerne über solche Alpha-Cluster-Strukturen verfügen. Dies wären in der Kernphysik ziemlich exotische Anordnungen, die einige wirklich spannende Fragen zur Form und Stabilität aufwerfen würden. Beispielsweise, ob Alpha-Cluster längere Ketten bilden können. Wir überprüfen diese Möglichkeiten.“ Prof. Evgeny Epelbaum ergänzt: „Die weitere Erforschung des Hoyle-Zustands gehört zu den interessantesten, schwierigsten und aktuellsten Herausforderungen in der Kernphysik.“

Zahlreiche Unterstützer

Die Arbeit der Forscher wurde finanziell unterstützt von der Deutschen Forschungsgemeinschaft, der Helmholtz-Gemeinschaft Deutscher Forschungszentren, dem Bundesministerium für Bildung und Forschung, vom US-Energieministerium, dem Projekt HadronPhysics3 der Europäischen Union und dem Europäischen Forschungsrat sowie von der nationalen chinesischen Stiftung für Naturwissenschaft (National Natural Science Foundation of China).

Titelaufnahme

D. Lee, E. Epelbaum, H. Krebs, T. Laehde, U. Meißner: „Structure and Rotations of the Hoyle State“, Physical Review Letters

Weitere Informationen

Prof. Dr. Evgeny Epelbaum, Institut für Theoretische Physik II, Fakultät für Physik und Astronomie der Ruhr-Universität Bochum, Telefon: 0234/32-28707

evgeny.epelbaum@rub.de

Prof. Dr. Ulf-G. Meißner, Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn, Telefon: 0228/73-2365
meissner@hiskp.uni-bonn.de

Redaktion: Jens Wylkop

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht ALMA beginnt Beobachtung der Sonne
18.01.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Magnetische Kraft von einzelnen Antiprotonen mit höchster Genauigkeit bestimmt
18.01.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der erste Blick auf ein einzelnes Protein

18.01.2017 | Biowissenschaften Chemie

Das menschliche Hirn wächst länger und funktionsspezifischer als gedacht

18.01.2017 | Biowissenschaften Chemie

Zur Sicherheit: Rettungsautos unterbrechen Radio

18.01.2017 | Verkehr Logistik