Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Konzept zur Herstellung von magnetischen Datenspeichern aus Dresden

12.01.2009
Die Speicherdichte von Computer-Festplatten nimmt so rasant zu, dass für neue Generationen von Festplatten nicht nur die Materialien selbst, sondern auch die Konzepte zur Datenspeicherung optimiert werden müssen.

Ein neues Konzept zur Herstellung von kleinsten und superflachen magnetischen Strukturen wurde jetzt von Physikern aus Dresden und Spanien entwickelt und in der Fachzeitschrift "Small" vorgestellt.

In den vergangenen Jahrzehnten wurden ausschließlich die Materialien optimiert, um immer höhere Speicherdichten bei Computer-Festplatten zu ermöglichen. Die Speicherung selbst funktioniert mit Magnetismus. Die einzelnen Körner, aus denen das magnetische Material besteht, wurden also immer kleiner.

Gleichzeitig wurde die Speicherfestigkeit (im Fachjargon "magnetische Anisotropie") immer größer. Die kleinste Speichereinheit (1 Bit) wird typischerweise gleichzeitig in ca. 100 Körner geschrieben, von denen jedes etwa 10 Nanometer groß ist (1 Nanometer = 1 Millionstel Millimeter). Die Körner sitzen nebeneinander in magnetischen Schichten und sind so dick wie die jeweilige Schicht. Da die Abmessungen der Körner nicht weiter verkleinert werden können, ohne die Speichereigenschaften zu verlieren, müssten zukünftig immer weniger Körner zur Speicherung einer einzelnen Information verwendet werden. Das führt unweigerlich zu einer größeren Fehlerwahrscheinlichkeit beim Auslesen der Information. Eine Möglichkeit, dies zu umgehen, besteht darin, nur noch eine einzige magnetische Insel als Speichereinheit zu verwenden, die dann größer sein darf, allerdings präzise positioniert sein muss.

Solche magnetischen Inseln können zum Beispiel mit Hilfe von gängigen Nano-Strukturierungstechniken aus einer durchgängigen magnetischen Materialoberfläche herausgearbeitet werden. Diese Vorgehensweise ist bisher jedoch mit einem großen Nachteil verbunden: die so hergestellten Nano-Inseln sitzen auf der Materialoberfläche und machen diese rau, was sich nachteilig auf den ca. 20 Nanometer über der Festplatte fliegenden Schreib-/Lesekopf auswirkt. Insofern sind Konzepte gefragt, die einerseits eine magnetische Strukturierung deutlich unterhalb von 100 Nanometern erlauben, aber gleichzeitig die Oberfläche unverändert eben belassen.

Physikern vom Forschungszentrum Dresden-Rossendorf (FZD) gelang es nun in Zusammenarbeit v. a. mit Kollegen aus Spanien sowie von weiteren Einrichtungen wie dem Leibniz-Institut für Festkörper- und Werkstoffforschung (IFW), superflache Nano-Magnete in Legierungen aus Eisen und Aluminium herzustellen, indem sie die Materialoberfläche mit Fremdatomen behandelten. Sie beschossen mit einem sehr fein gebündelten Ionenstrahl (schnelle geladene Atome) die Oberfläche so, dass nur die bestrahlten Bereiche des Materials ferromagnetisch wurden; die unbestrahlten Bereiche blieben unmagnetisch.

Der Ionenstrahl kann auf eine Fläche von wenigen Nanometern gebündelt werden, was die eingebetteten Nano-Magnete mit einer Größe von deutlich unter 100 Nanometern überhaupt erst möglich macht. Gleichzeitig ist die zum Einsatz kommende Ionendosis gering. Damit tritt kein deutlicher Materialabtrag auf und die Oberfläche des Materials bleibt unverändert eben. Die Dresdner Nano-Magnete erfüllen alle Anforderungen an ein neues Konzept zur magnetischen Datenspeicherung. Um eine technologische Umsetzung dieses Konzepts verwirklichen zu können, arbeiten die Forscher nun an einer Verbesserung der Speicherfestigkeit dieses Materials.

Veröffentlichung:
E. Menéndez*, M. O. Liedke*, J. Fassbender*, T. Gemming#, A. Weber~, L. J. Heyderman~, K. V. Rao+, S. C. Deevi$, S. Surinach§, M. D. Baro§, J. Sort§, J. Nogues§, "Direct Magnetic Patterning due to the Generation of Ferromagnetism by Selective Ion Irradiation of Paramagnetic FeAl Alloys", in: Small, 2009 (DOI: 10.1002/smll.200800783, Publikation im Druck). * Forschungszentrum Dresden-Rossendorf (FZD) / # Leibniz-Institut für Festkörper- und Werkstoffforschung (IFW) Dresden / ~ Paul-Scherrer-Institut (PSI), Schweiz / + Royal Institute of Technology Schweden / $ Research Center, Philip Morris USA / § Universitat Autònoma de Barcelona, Spanien
Ansprechpartner im FZD:
Dr. Jürgen Fassbender
Institut für Ionenstrahlphysik und Materialforschung
Forschungszentrum Dresden-Rossendorf (FZD)
Tel.: 0351 260 - 3096
Email: j.fassbender@fzd.de
Pressekontakt im FZD:
Dr. Christine Bohnet
Presse- und Öffentlichkeitsarbeit, Forschungszentrum Dresden-Rossendorf (FZD)
Bautzner Landstr. 400, 01328 Dresden
Tel.: 0351 260 - 2450 oder 0160 969 288 56
Fax: 0351 260 - 2700
Email : presse@fzd.de
Information:
Das Forschungszentrum Dresden-Rossendorf (FZD) hat das Ziel, strategisch und langfristig ausgerichtete Spitzenforschung in politisch und gesellschaftlich relevanten Forschungsthemen wie Energie, Gesundheit und Schlüsseltechnologien zu leisten. Folgende Fragestellungen stehen dabei im Mittelpunkt:
- Wie verhält sich Materie unter dem Einfluss hoher Felder und in winzigen Dimensionen?
- Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?
- Wie schützt man Mensch und Umwelt vor technischen Risiken?
Diese Fragestellungen werden in strategischen Kooperationen mit Forschungs- und Industriepartnern bearbeitet. Ein weiterer Schwerpunkt ist der Betrieb von sechs einmaligen Großgeräten, die auch externen Nutzern zur Verfügung stehen.

Das FZD wird von Bund und Land gefördert und beschäftigt rund 750 Personen. Bei der Auswahl neuer Mitarbeiter stehen Qualität und Internationalität an erster Stelle. Die Ausbildung von wissenschaftlichem und technischem Nachwuchs erfolgt auf hohem Niveau und in enger Zusammenarbeit mit den Hochschulen.

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fzd.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien
17.01.2018 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Projekt "HorseVetMed": Forscher entwickeln innovatives Sensorsystem zur Tierdiagnostik

17.01.2018 | Agrar- Forstwissenschaften

Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt

17.01.2018 | Physik Astronomie

Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

17.01.2018 | Physik Astronomie