Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues vom Kondo-Effekt – Licht erhellt Phänomen der Vielteilchenphysik

01.07.2011
Eines der meistdiskutierten Phänomene der Vielteilchenphysik ist der sogenannte Kondo-Effekt.

Er beschreibt, wie das winzige Magnetfeld, das mit dem Spin eines einzelnen, lokalisierten Elektrons assoziiert ist, durch bewegliche Elektronen der Umgebung abgeschirmt wird.

Eine Vielzahl von Studien im letzten Jahrzehnt untersuchten den Kondo-Effekt in sogenannten Quantenpunkten, also in nanoskalige Halbleiterstrukturen, in denen einzelne Elektronen eingefangen und manipuliert werden können.

Diese Studien beschränkten sich jedoch bisher auf den Einfluss des Kondo-Effekts auf den elektronischen Widerstand eines Quantendots. Ein internationales Forscherteam, dem auch der LMU-Physiker Professor Jan von Delft angehört, untersuchte nun mithilfe resonanter Laserabsorption wie ein Kondo-korrelierter Quantenpunkt auf das plötzliche Ausschalten der für die Kondo-Korrelationen verantwortlichen Wechselwirkung reagiert. (Nature online, 30. Juni 2011)

Die aktuelle Studie eröffnet mittels optischer Messungen eine neue Perspektive. Sie zeigt, dass die den Kondo-Effekt erzeugende Wechselwirkung durch die Absorption eines einzelnen Photons ausgeschaltet werden kann, und liefert einen tiefen Einblick in den anschließenden Zerfall der Kondo-Korrelation. Der Beitrag der Münchner Physiker Markus Hanl, Andreas Weichselbaum und Jan von Delft, die auch dem Exzellenzcluster „Nanosystems Initiative Munich“ (NIM) angehören, besteht in der theoretischen Modellierung des Experiments. Die Studie leitet eine neue Arbeitsrichtung ein, nämlich die Untersuchung von Vielteilchenphänomenen mittels quantenoptischer Methoden.

Das Experiment untersucht die Absorptionslinienform (die Absorptionsrate als Funktion der Frequenz) von Photonen, die von einem Quantendot absorbiert werden. Der Quantendot ist recht stark an die beweglichen Leitungselektronen der Umgebung angekoppelt und so eingestellt, dass ein einziges, im Dot lokalisiertes, Elektron die Absorptionseigenschaften dominiert. Vor Absorption eines Photons zeigt der Quantendot den Kondo-Effekt: Der Spin des lokalisierten Elektrons ist stark mit den Spins der beweglichen Leitungselektronen korreliert, die den lokalisierten Spin abschirmen und so dessen magnetisches Moment reduzieren. Bei der Absorption eines einfallenden Photons wird ein weiteres Elektron von einem tiefer liegenden Energieniveau in das Niveau des ersten Elektrons angeregt. Diese plötzliche Änderung stellt einen Quantenquench dar, der die Austauschwechselwirkung zwischen dem lokalen Elektron und den beweglichen Leitungselektronen ausschaltet. Als Konsequenz verschwinden Kondo-Korrelationen innerhalb einer kurzen Zeit nach dem Quench.

Der Endzustand der beweglichen Leitungselektronen unterscheidet sich somit stark vom Anfangszustand. Ein solcher Unterschied war bereits 1967 von P. W. Anderson beschrieben worden, der dafür den Begriff “Orthogonalitätskatastrophe” prägte. Anderson's Orthogonalitätskatastrophe hinterlässt subtile aber eindeutige Signaturen in der Absorptionslinienform, nämlich ein Potenzgesetzverhalten, dessen Exponent das Ausmaß der Orthogonalität charakterisiert. Im aktuellen Experiment gelang es erstmals, Signaturen dieses Potenzgesetzverhaltens in der gemessenen Linienform nachzuweisen; insbesondere konnte der entsprechende Exponent mittels eines angelegten Magnetfelds verändert werden, in guter Übereinstimmung mit den theoretischen Rechnungen der Münchner Physiker. (NIM)

Publikation:
„Quantum quench of Kondo correlations in optical absorption“;
C. Latta, F. Haupt, M. Hanl, A. Weichselbaum, M. Claassen, W. Wuester, P. Fallahi, S. Faelt, L. Glazman, J. Von Delft, H. E. Türeci, A. Imamoglu;
Nature online, 30. Juni 2011;
doi: 10.1038/nature10204
Ansprechpartner:
Prof. Dr. Jan von Delft
Fakultät für Physik
Tel.: 089 / 2180 – 4527
Fax: 089 / 2180 – 4155
E-Mail: vondelft@lmu.de
Web: http://homepages.physik.uni-muenchen.de/~vondelft

Luise Dirscherl | idw
Weitere Informationen:
http://www.lmu.de
http://homepages.physik.uni-muenchen.de/~vondelft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie