Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues vom Kondo-Effekt – Licht erhellt Phänomen der Vielteilchenphysik

01.07.2011
Eines der meistdiskutierten Phänomene der Vielteilchenphysik ist der sogenannte Kondo-Effekt.

Er beschreibt, wie das winzige Magnetfeld, das mit dem Spin eines einzelnen, lokalisierten Elektrons assoziiert ist, durch bewegliche Elektronen der Umgebung abgeschirmt wird.

Eine Vielzahl von Studien im letzten Jahrzehnt untersuchten den Kondo-Effekt in sogenannten Quantenpunkten, also in nanoskalige Halbleiterstrukturen, in denen einzelne Elektronen eingefangen und manipuliert werden können.

Diese Studien beschränkten sich jedoch bisher auf den Einfluss des Kondo-Effekts auf den elektronischen Widerstand eines Quantendots. Ein internationales Forscherteam, dem auch der LMU-Physiker Professor Jan von Delft angehört, untersuchte nun mithilfe resonanter Laserabsorption wie ein Kondo-korrelierter Quantenpunkt auf das plötzliche Ausschalten der für die Kondo-Korrelationen verantwortlichen Wechselwirkung reagiert. (Nature online, 30. Juni 2011)

Die aktuelle Studie eröffnet mittels optischer Messungen eine neue Perspektive. Sie zeigt, dass die den Kondo-Effekt erzeugende Wechselwirkung durch die Absorption eines einzelnen Photons ausgeschaltet werden kann, und liefert einen tiefen Einblick in den anschließenden Zerfall der Kondo-Korrelation. Der Beitrag der Münchner Physiker Markus Hanl, Andreas Weichselbaum und Jan von Delft, die auch dem Exzellenzcluster „Nanosystems Initiative Munich“ (NIM) angehören, besteht in der theoretischen Modellierung des Experiments. Die Studie leitet eine neue Arbeitsrichtung ein, nämlich die Untersuchung von Vielteilchenphänomenen mittels quantenoptischer Methoden.

Das Experiment untersucht die Absorptionslinienform (die Absorptionsrate als Funktion der Frequenz) von Photonen, die von einem Quantendot absorbiert werden. Der Quantendot ist recht stark an die beweglichen Leitungselektronen der Umgebung angekoppelt und so eingestellt, dass ein einziges, im Dot lokalisiertes, Elektron die Absorptionseigenschaften dominiert. Vor Absorption eines Photons zeigt der Quantendot den Kondo-Effekt: Der Spin des lokalisierten Elektrons ist stark mit den Spins der beweglichen Leitungselektronen korreliert, die den lokalisierten Spin abschirmen und so dessen magnetisches Moment reduzieren. Bei der Absorption eines einfallenden Photons wird ein weiteres Elektron von einem tiefer liegenden Energieniveau in das Niveau des ersten Elektrons angeregt. Diese plötzliche Änderung stellt einen Quantenquench dar, der die Austauschwechselwirkung zwischen dem lokalen Elektron und den beweglichen Leitungselektronen ausschaltet. Als Konsequenz verschwinden Kondo-Korrelationen innerhalb einer kurzen Zeit nach dem Quench.

Der Endzustand der beweglichen Leitungselektronen unterscheidet sich somit stark vom Anfangszustand. Ein solcher Unterschied war bereits 1967 von P. W. Anderson beschrieben worden, der dafür den Begriff “Orthogonalitätskatastrophe” prägte. Anderson's Orthogonalitätskatastrophe hinterlässt subtile aber eindeutige Signaturen in der Absorptionslinienform, nämlich ein Potenzgesetzverhalten, dessen Exponent das Ausmaß der Orthogonalität charakterisiert. Im aktuellen Experiment gelang es erstmals, Signaturen dieses Potenzgesetzverhaltens in der gemessenen Linienform nachzuweisen; insbesondere konnte der entsprechende Exponent mittels eines angelegten Magnetfelds verändert werden, in guter Übereinstimmung mit den theoretischen Rechnungen der Münchner Physiker. (NIM)

Publikation:
„Quantum quench of Kondo correlations in optical absorption“;
C. Latta, F. Haupt, M. Hanl, A. Weichselbaum, M. Claassen, W. Wuester, P. Fallahi, S. Faelt, L. Glazman, J. Von Delft, H. E. Türeci, A. Imamoglu;
Nature online, 30. Juni 2011;
doi: 10.1038/nature10204
Ansprechpartner:
Prof. Dr. Jan von Delft
Fakultät für Physik
Tel.: 089 / 2180 – 4527
Fax: 089 / 2180 – 4155
E-Mail: vondelft@lmu.de
Web: http://homepages.physik.uni-muenchen.de/~vondelft

Luise Dirscherl | idw
Weitere Informationen:
http://www.lmu.de
http://homepages.physik.uni-muenchen.de/~vondelft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Extra-Sekunde zum neuen Jahr
08.12.2016 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System
08.12.2016 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops