Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues von den kleinsten Galaxien des Universums

15.01.2009
Die kleinsten Galaxien des Universums leuchten viel schwächer, als es für Sternenhaufen ihrer Gewichtsklasse zu erwarten wäre. Astronomen der Universität Bonn präsentieren nun eine Erklärung für dieses überraschende Phänomen: Nach ihren Berechnungen beheimaten die so genannten "Ultrakompakten Zwerggalaxien" außergewöhnlich viele Neutronensterne und Schwarze Löcher - das Erbe einer gleißend hellen Vergangenheit.

Sie sind die kleinsten unter den Galaxien im Weltall: Ultrakompakte Zwerggalaxien (UCDs, nach dem Englischen ultra compact dwarf galaxies) sind so klein, dass Astronomen sie beim Blick durch das Teleskop lange Zeit für ganz normale Sterne der Milchstraße gehalten hatten.

Erst als vor rund zehn Jahren der Bonner Astronom Michael Hilker und der Australier Michael Drinkwater das Lichtspektrum dieser vermeintlichen Einzelsterne genauer analysierten, entpuppten sie sich als unvergleichlich kompakte Ansammlung von Sternen.

UCDs ähneln in vielen Aspekten den einfachen Kugelsternhaufen, die Galaxien wie unser Milchstraßensystem umgeben. Wegen ihrer ungeheuren Masse zählen Astronomen sie aber häufig zu den Galaxien: Sie sind bis zu hundert Mal schwerer als die massereichsten Kugelsternhaufen. Diese Masse konzentrieren die Zwerggalaxien zudem auf engstem Raum, daher ihr Name: ultrakompakt. Sie sind etwa hundertmal kleiner als durchschnittliche Galaxien. "Der Abstand von unserer Sonne zum galaktischen Zentrum der Milchstraße beträgt etwa 30.000 Lichtjahre. UCDs sind höchstens hundert Lichtjahre groß", verdeutlicht Jörg Dabringhausen, Doktorand am Argelander-Institut für Astronomie der Universität Bonn, die Dimensionen.

Zu dunkel für ihre Masse

Bei den Spektralanalysen der UCDs machten Astronomen schon früh eine überraschende Entdeckung: "Diese Zwerggalaxien müssten angesichts ihrer großen Masse eigentlich mehr Helligkeit aussenden", sagt Dabringhausen. Zusammen mit Professor Dr. Pavel Kroupa und Holger Baumgardt präsentiert er nun im Fachmagazin Monthly Notices of the Royal Astronomical Society ein theoretisches Modell, das diese Licht-Masse-Anomalie der UCDs erklären kann. Die Lösung sind astronomische Objekte, die viel Masse beisteuern, aber kein Licht aussenden. Diese Eigenschaften erfüllen zwei astronomische Extremisten, die den Endpunkt in der Biographie besonders massereicher Sternen darstellen: Neutronensterne und Schwarze Löcher.

"Beide sind im All weit verbreitet", sagt Pavel Kroupa, der die Arbeitsgruppe Astrophysics of Stellar Populations, Dynamics and Dark Matter am Argelander-Institut leitet. "Es sollte sie aber in den UCDs besonders häufig geben." Nach den Berechnungen der Bonner Astronomen gab es in den UCDs nämlich ursprünglich besonders viele schwere Sterne. So machen in unserer Heimatgalaxie Sterne mit mehr als acht Sonnenmassen nur etwa 23 Prozent der Gesamtmasse aller entstehenden Sterne aus. In den UCDs müsste dieser Wert bei bis zu 90 Prozent gelegen haben. "Weil die UCDs aber sehr alte Objekte sind, haben diese schweren Sterne bereits den Endpunkt ihrer Entwicklung erreicht und wurden zu Neutronensternen oder Schwarzen Löchern", erklärt Kroupa.

UCDs müssen ursprünglich wahre Schmelztiegel gewesen sein; vor allem, wenn man bedenkt, dass sie bei ihrer Geburt noch enger gepackt waren, als sie es heute schon sind. "Zwei Protosterne in einer jungen UCD waren sich tausendmal näher als heute unserer Sonne und der nächste benachbarte Stern", sagt Dabringhausen. Bei solch extrem hohen Sterndichten müssen die jungen Sterne zu exotischen und bisher unbekannten sternähnlichen Objekten verschmolzen sein, vermuten die Bonner Forscher. "Durch die Verschmelzung müssen die UCDs in diesem Stadium ihrer Entwicklung gleißend hell gewesen sein", erläutert Jörg Dabringhausen. Hätte man damals einen Blick auf die Geburt einer solchen Zwerggalaxie werfen können, man wäre geblendet worden von so viel Licht. Nach Berechnungen der Bonner Forscher hatten UCDs in ihrem Anfangsstadium die Leuchtkraft einer großen Galaxie, und das konzentriert auf einen Raum von nur etwa einhundert Lichtjahren Durchmesser.

Die extremen Bedingungen in diesem Stadium haben Konsequenzen für die Astrophysik dieses Galaxietypus: "Das Strahlungsfeld im Inneren der UCDs war so stark, dass die Sternentstehung und die eigentliche Struktur der Sterne völlig neu berechnet werden müssen", erklären die Forscher. Bisher gibt es hierzu aber noch keinerlei theoretische Arbeiten. Wenn sich die Berechnungen der Bonner Astronomen also bestätigen, zählen Ultrakompakte Zwerggalaxien zu den extremsten Orten im Universum, an denen Sterne entstanden sind.

Kontakt:
Jörg Dabringhausen
Universität Bonn, Arbeitsgruppe Astrophysics of Stellar Populations,
Dynamics and Dark Matter
Telefon: 0228/73-6140
Email: joedab@astro.uni-bonn.de
Professor Dr. Pavel Kroupa
Telefon: 0228/73-6140
Email: pavel@astro.uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.astro.uni-bonn.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie