Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues von den kleinsten Galaxien des Universums

15.01.2009
Die kleinsten Galaxien des Universums leuchten viel schwächer, als es für Sternenhaufen ihrer Gewichtsklasse zu erwarten wäre. Astronomen der Universität Bonn präsentieren nun eine Erklärung für dieses überraschende Phänomen: Nach ihren Berechnungen beheimaten die so genannten "Ultrakompakten Zwerggalaxien" außergewöhnlich viele Neutronensterne und Schwarze Löcher - das Erbe einer gleißend hellen Vergangenheit.

Sie sind die kleinsten unter den Galaxien im Weltall: Ultrakompakte Zwerggalaxien (UCDs, nach dem Englischen ultra compact dwarf galaxies) sind so klein, dass Astronomen sie beim Blick durch das Teleskop lange Zeit für ganz normale Sterne der Milchstraße gehalten hatten.

Erst als vor rund zehn Jahren der Bonner Astronom Michael Hilker und der Australier Michael Drinkwater das Lichtspektrum dieser vermeintlichen Einzelsterne genauer analysierten, entpuppten sie sich als unvergleichlich kompakte Ansammlung von Sternen.

UCDs ähneln in vielen Aspekten den einfachen Kugelsternhaufen, die Galaxien wie unser Milchstraßensystem umgeben. Wegen ihrer ungeheuren Masse zählen Astronomen sie aber häufig zu den Galaxien: Sie sind bis zu hundert Mal schwerer als die massereichsten Kugelsternhaufen. Diese Masse konzentrieren die Zwerggalaxien zudem auf engstem Raum, daher ihr Name: ultrakompakt. Sie sind etwa hundertmal kleiner als durchschnittliche Galaxien. "Der Abstand von unserer Sonne zum galaktischen Zentrum der Milchstraße beträgt etwa 30.000 Lichtjahre. UCDs sind höchstens hundert Lichtjahre groß", verdeutlicht Jörg Dabringhausen, Doktorand am Argelander-Institut für Astronomie der Universität Bonn, die Dimensionen.

Zu dunkel für ihre Masse

Bei den Spektralanalysen der UCDs machten Astronomen schon früh eine überraschende Entdeckung: "Diese Zwerggalaxien müssten angesichts ihrer großen Masse eigentlich mehr Helligkeit aussenden", sagt Dabringhausen. Zusammen mit Professor Dr. Pavel Kroupa und Holger Baumgardt präsentiert er nun im Fachmagazin Monthly Notices of the Royal Astronomical Society ein theoretisches Modell, das diese Licht-Masse-Anomalie der UCDs erklären kann. Die Lösung sind astronomische Objekte, die viel Masse beisteuern, aber kein Licht aussenden. Diese Eigenschaften erfüllen zwei astronomische Extremisten, die den Endpunkt in der Biographie besonders massereicher Sternen darstellen: Neutronensterne und Schwarze Löcher.

"Beide sind im All weit verbreitet", sagt Pavel Kroupa, der die Arbeitsgruppe Astrophysics of Stellar Populations, Dynamics and Dark Matter am Argelander-Institut leitet. "Es sollte sie aber in den UCDs besonders häufig geben." Nach den Berechnungen der Bonner Astronomen gab es in den UCDs nämlich ursprünglich besonders viele schwere Sterne. So machen in unserer Heimatgalaxie Sterne mit mehr als acht Sonnenmassen nur etwa 23 Prozent der Gesamtmasse aller entstehenden Sterne aus. In den UCDs müsste dieser Wert bei bis zu 90 Prozent gelegen haben. "Weil die UCDs aber sehr alte Objekte sind, haben diese schweren Sterne bereits den Endpunkt ihrer Entwicklung erreicht und wurden zu Neutronensternen oder Schwarzen Löchern", erklärt Kroupa.

UCDs müssen ursprünglich wahre Schmelztiegel gewesen sein; vor allem, wenn man bedenkt, dass sie bei ihrer Geburt noch enger gepackt waren, als sie es heute schon sind. "Zwei Protosterne in einer jungen UCD waren sich tausendmal näher als heute unserer Sonne und der nächste benachbarte Stern", sagt Dabringhausen. Bei solch extrem hohen Sterndichten müssen die jungen Sterne zu exotischen und bisher unbekannten sternähnlichen Objekten verschmolzen sein, vermuten die Bonner Forscher. "Durch die Verschmelzung müssen die UCDs in diesem Stadium ihrer Entwicklung gleißend hell gewesen sein", erläutert Jörg Dabringhausen. Hätte man damals einen Blick auf die Geburt einer solchen Zwerggalaxie werfen können, man wäre geblendet worden von so viel Licht. Nach Berechnungen der Bonner Forscher hatten UCDs in ihrem Anfangsstadium die Leuchtkraft einer großen Galaxie, und das konzentriert auf einen Raum von nur etwa einhundert Lichtjahren Durchmesser.

Die extremen Bedingungen in diesem Stadium haben Konsequenzen für die Astrophysik dieses Galaxietypus: "Das Strahlungsfeld im Inneren der UCDs war so stark, dass die Sternentstehung und die eigentliche Struktur der Sterne völlig neu berechnet werden müssen", erklären die Forscher. Bisher gibt es hierzu aber noch keinerlei theoretische Arbeiten. Wenn sich die Berechnungen der Bonner Astronomen also bestätigen, zählen Ultrakompakte Zwerggalaxien zu den extremsten Orten im Universum, an denen Sterne entstanden sind.

Kontakt:
Jörg Dabringhausen
Universität Bonn, Arbeitsgruppe Astrophysics of Stellar Populations,
Dynamics and Dark Matter
Telefon: 0228/73-6140
Email: joedab@astro.uni-bonn.de
Professor Dr. Pavel Kroupa
Telefon: 0228/73-6140
Email: pavel@astro.uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.astro.uni-bonn.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie