Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues holografisches Verfahren nutzt „bildstabilisierte Röntgenkamera“

07.01.2014
Ein Team um Stefan Eisebitt hat ein neues Röntgen-Holografie-Verfahren entwickelt, das „Schnappschüsse“ von dynamischen Prozessen mit bisher unerreichter Auflösung in Aussicht stellt.

Die Effizienz des neuartigen Verfahrens beruht auf einer fokussierenden Röntgenoptik, die mit dem abzubildenden Objekt fest verbunden ist. Dadurch liefert das Verfahren zwar zunächst eine unscharfe Abbildung, diese kann im Nachhinein jedoch fokussiert werden.


Als Testobjekte nutzten die Forscher den Umriss eines Geckos, der 10.000-fach verkleinert in eine Goldfolie einstrukturiert wurde und einen Ausschnitt aus dem „Siemensstern“, der hier wie eine Muschel aussieht. Das ganze Testobjekt hat mit sechs Mikrometern Durchmesser etwa die Größe eines roten Blutkörperchens. Die kleinsten noch aufgelösten Strukturen haben eine Breite von gerade einmal 46 Nanometern.
Fotonachweis: J. Geilhufe/HZB

Gleichzeitig löst dieser Trick (nämlich die feste Verbindung zwischen Objekt und Fokussieroptik) elegant das Problem des „Verwackelns“, das auf Nanometerskala eine enorme Rolle spielt.

Professor Dr. Stefan Eisebitt, der an der TU Berlin das Fachgebiet Nanometeroptik und Röntgenoptik leitet und auch am HZB forscht, erklärt: „So wie ein lichtstarkes Objektiv am Fotoapparat auch bei schwacher Beleuchtung noch scharfe Bilder ermöglicht, ermöglicht es auch hier ein optisches Element, das Röntgenlicht effizienter zu nutzen. Gleichzeitig haben wir diese Röntgenlinse fest mit dem abzubildenden Objekt gekoppelt, so dass Vibrationen keine Rolle mehr spielen und das Bild stabilisiert wird.“ Kontrastarme oder sich bewegende Nanoobjekte können damit deutlich besser abgebildet werden.

Für die Röntgen-Holografie wird „kohärentes Licht“ benötigt, bei dem die elektromagnetischen Wellen im Gleichtakt schwingen. Solches Licht produzieren Laser oder Synchrotronquellen wie BESSY II. Bei dem verwendeten holografischen Verfahren fällt ein Teil des Röntgenlichts auf das abzubildende Objekt und ein weiterer Teil durchdringt normalerweise eine Lochblende, die sich seitlich neben dem Objekt befindet: dies ist die Referenzwelle. Durch die Überlagerung beider Wellen entsteht ein Hologramm, welches von einem Detektor aufgezeichnet wird. Eine Abbildung des beleuchteten Objekts wird dann aus dem Hologramm am Computer rekonstruiert. Doch die Lochblende besitzt einen Nachteil: Um eine scharfe Abbildung zu ermöglichen, muss sie sehr klein sein, lässt dann jedoch zu wenig Licht hindurch, um auch bei sehr kontrastarmen Objekten ein gutes Bild zu erzeugen – ein Dilemma.

Mehr Licht durch spezielle Optik

Eine Lösung fanden die Physiker um Eisebitt mit einer speziellen Optik: einer Fresnel-Zonenplatte. Diese wird – als Ersatz für die Lochblende – auf der Objektebene selbst platziert. Dadurch gelingt es, die Referenzwelle deutlich zu verstärken. Allerdings liegt der Fokus der Optik (der einer idealen Punkt-förmigen Lochblende entspräche) eben nicht auf der Objektebene, so dass die Abbildung unscharf wird. Im Gegensatz zu einer Fotografie lässt sich jedoch diese Unschärfe aus einem Hologramm jedoch rechnerisch präzise korrigieren. Durch die effizientere Optik können Belichtungszeiten drastisch reduziert werden. So eignet sich die Methode nun besser um Schnappschüsse von ultraschnellen Prozessen zu ermöglichen.

Gecko-Umriss als Testobjekt

Doktorand Jan Geilhufe hat diese Idee ausgearbeitet und umgesetzt, und er war es auch, der das Bild des Geckos als filigranes Testobjekt beigesteuert hat. Dessen Umriss wurde zehntausendfach verkleinert in eine Goldfolie einstrukturiert. „Uns war es wichtig, ein originelles Testobjekt zu finden um zu zeigen wie gut die Methode funktioniert“, sagt Geilhufe. Die Muschel im Zentrum des Testobjekts zeigt dabei einen Ausschnitt aus einem sogenannten Siemensstern, einer Struktur zur Auflösungsbestimmung. Ähnlich wie am Schwanz des Geckos kann man an den zulaufenden Strahlen des Siemenssterns messen, wie gut unterschiedliche Strukturbreiten im Bild dargestellt werden. Das ganze Testobjekt hat mit sechs Mikrometern Durchmesser etwa die Größe eines roten Blutkörperchens. Die kleinsten noch aufgelösten Strukturen haben eine Breite von gerade einmal 46 Nanometern.

Röntgenkamera mit Bildstabilisator

Das altbekannte Problem des „Verwackelns“ durch Vibrationen des Bildgegenstandes relativ zur Optik wird umso dramatischer, je höher die Auflösung des optischen Systems ist. „In der Erforschung von Methoden zur hochauflösenden Röntgenbildgebung strebt man derzeit nach Auflösung von unter zehn Nanometern. Das sind weniger als hundert Atomabstände, daher machen sich selbst kleinste Schwingungen bemerkbar. Da reicht es schon, wenn einen Kilometer weiter die Straßenbahn vorbeifährt“, sagt Geilhufe. „Wir haben aber mit unserem Verfahren die Schwingungen des Objekts mit den Schwingungen der Referenzoptik fest gekoppelt, so dass die Linse exakt wie das Objekt schwingt. Wir haben sozusagen eine Röntgenkamera mit Bildstabilisator gebaut.“

„Die Kombination der weltweit anerkannten Expertise des HZB in der Herstellung von Fresnel-Zonenplatten mit den flexiblen Strukturierungsmöglichkeiten der „Nano-Werkbank“ an der TU Berlin hat diesen Fortschritt möglich gemacht“, betont Eisebitt.

Neue Methode wird an BESSY II angeboten

Heute wird die Arbeit in Nature Communications veröffentlicht, dann könnte die neue Methode von vielen Forschungsgruppen genutzt werden. Denn bessere räumliche und zeitliche Auflösungen versprechen neue Einblicke in schnelle Prozesse, zum Beispiel in schnelle magnetische Schaltvorgänge, die für die Datenspeicherung von Interesse sind. „Wir hoffen, dass unser Verfahren für viele Forschungsfragen nützlich ist und dazu beiträgt, die Welt auf der Skala weniger Nanometer besser zu verstehen“, sagt Stefan Eisebitt. Zukünftig wollen Eisebitt und sein Team ihre neue holografische Technik an BESSY II am so genannten RICXS-Aufbau auch Messgästen aus aller Welt anbieten.

Die Veröffentlichung erscheint heute (7.1.2014) in Nature Communications (DOI: 10.1038/ncomms4008).

Weitere Informationen:
Jan Geilhufe
Tel.: +49 (0)30-8062-14379
jan.geilhufe@helmholtz-berlin.de
Prof. Dr. Stefan Eisebitt
TU Berlin
Forschergruppe Funktionale Nanomaterialien
Tel.: +49 30 314-22258
eisebitt@physik.tu-berlin.de
Pressestelle
Dr. Antonia Rötger
Tel.: +49 (0)30-8062-43733
Fax: +49 (0)30-8062-42998
antonia.roetger@helmholtz-berlin.de

Dr. Ina Helms | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-berlin.de/pubbin/news_seite?nid=13888

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Topologische Isolatoren: Neuer Phasenübergang entdeckt
17.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen
17.10.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mobilität 4.0: Konferenz an der Jacobs University

18.10.2017 | Veranstaltungen

Smart MES 2017: die Fertigung der Zukunft

18.10.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

18.10.2017 | Biowissenschaften Chemie

Biokunststoffe könnten auch in Traktoren die Richtung angeben

18.10.2017 | Messenachrichten

»ILIGHTS«-Studie gestartet: Licht soll Wohlbefinden von Schichtarbeitern verbessern

18.10.2017 | Energie und Elektrotechnik