Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues DFG-Projekt erforscht Graphen - Mit Nobelpreisträgern in einem Boot

25.10.2010
„Endlich muss ich meine Arbeit nicht mehr langwierig erklären. Viele Menschen wissen, woran ich forsche, seit der Nobelpreis dafür verliehen wurde“, freut sich Prof. Dr. Marika Schleberger. Die Physikerin der Universität Duisburg-Essen (UDE) untersucht Graphen.

Der zweidimensionale Kohlenstoff ist hundertmal leitfähiger als Kupfer, stabil wie ein Diamant und trotzdem ultradünn. Das fasziniert nicht nur die aktuellen Nobelpreisträger; gleich mehrere Projekte an der UDE widmen sich dem Wundermaterial. Jetzt beginnt zudem ein neues DFG-Vorhaben, das seine Herstellung optimieren soll.

Weil Graphen ein so vielversprechender Stoff ist, hat die Deutsche Forschungsgemeinschaft ein Schwerpunktprogramm eingerichtet. Dazu gehört das gerade bewilligte Vorhaben, das in den nächsten drei Jahren mit 225.000 Euro gefördert wird. Es ist an der UDE gut aufgehoben, denn die AG Schleberger hat in den vergangenen dreieinhalb Jahren bereits wichtige Grundlagenforschung betrieben. Das Team modifizierte gezielt Graphen und hat den Alleskönner u.a. mit schnellen Ionen beschossen. „Wir wollten wissen, wie man dieses ultradünne Material bearbeiten kann“, so die Professorin.

Dafür braucht man stabile Graphenlagen – bestehend aus einer einzelnen Atomschicht. Eine gute Methode haben die Nobelpreisträger entwickelt: Man drückt Tesafilm auf einen Grafitkristall und klebt diesen anschließend auf einen Siliziumwafer. Winzige Teile bleiben haften, darunter auch manchmal Graphen. Unter dem Rasterkraftmikroskop sehen diese Flächen aus wie Seidentücher. Sie sind 10.000-mal dünner als ein Haar und lassen sich mit Ionen zerschneiden oder falten.

Ideale Proben gesucht

Für das neue Projekt wollen die UDE-Wissenschaftler noch tiefer in die Nanowelten eintauchen. Sie präparieren eine Lage Kohlenstoff auf kristallinen Substraten wie etwa Strontiumtitanat, um sie zu analysieren. Dies geschieht im Ultrahochvakuum. „Wir möchten herausfinden, wie sich unter kontrollierten Bedingungen die Eigenschaften verändern und verbessern lassen“, erklärt Projektleiterin Schleberger. Denn bei dem bisherigen mechanischen Verfahren regierte das Zufallsprinzip: Keine Probe ist wie die andere. Aber erst mit Idealproben lässt sich beispielsweise messen, wie leitfähig das teuerste Material der Welt wirklich ist.

Wenn es gelingt, perfekte Monolagen herzustellen, kann man das spannende Material gezielt bearbeiten, und es könnte eines Tages Silizium in der Computerchipindustrie ablösen. „Es ist faszinierend, dass Kohle vom Energielieferanten zum absoluten Hightech-Werkstoff wird“, sagt Professorin Schleberger, auch mit einem Blick auf das Revier.

An ihre Tür klopfen derzeit viele interessierte Studierende, die davon gehört haben, dass hochaktuelle Forschung wie die Graphenprojekte an der UDE angesiedelt sind. Auch andere Kollegen experimentieren schon länger mit dem Material, z.B. PD Dr. Frank Meyer zu Heringdorf (Physik), Prof. Dr. Gerd Bacher (Elektrotechnik) und Dr. Gabi Schierning (Nanostrukturtechnik). Wenn sie Vorträge halten, geht es ihnen wie Marika Schleberger: Sie profitieren von der Aufmerksamkeit, die der Nobelpreis bewirkt hat, und referieren in gut gefüllten Hörsälen.

Weitere Informationen: Prof. Dr. rer. nat. Marika Schleberger, Tel. 0203/379-1600/1601, marika.schleberger@uni-due.de

Katrin Braun | idw
Weitere Informationen:
http://www.uni-due.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau