Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues aus der Materialphysik: Einzelne Siliziumatome in Graphen verschoben

12.09.2014

Seit einigen Jahren ist es möglich, einzelne Atome mit Hilfe eines Elektronenmikroskops abzubilden. Besonders eindrucksvoll gelingt dies bei Graphen, einer nur ein Atom dicken Schicht aus Kohlenstoffatomen.

Einer Gruppe rund um Toma Susi, Physiker an der Universität Wien, ist es nun in Kooperation mit Teams aus Großbritannien und den USA gelungen, einzelne Siliziumatome im Graphen-Gitter zerstörungsfrei zu bewegen. Aktuell berichten die ForscherInnen im renommierten Journal "Physical Review Letters", wie ihre Experimente mit Hilfe spezialisierter Mikroskopie-Techniken und aufwendiger Computerberechnungen glückten.


Aufgrund seiner relativen Größe ragt das Siliziumatom aus der Graphen-Ebene heraus

Toma Susi, Universität Wien


Materialphysiker Toma Susi

Copyright: Peter Rigaud, Universität Wien

Bereits 1959 hat der Physiker Richard Feynman die berühmte Frage gestellt, ob es jemals möglich sein wird, einzelne Atome sehen und sogar bewegen zu können. Lange Zeit galt seine Vision eher als Science Fiction, aber Schritt für Schritt wurde diese Vision durch die moderne Mikroskopie zur Realität im wissenschaftlichen Alltag. Bei solchen Untersuchungen können jedoch manchmal Schäden am erforschten Material entstehen.

High-Tech-Mikroskop ermöglichte Forschungserfolg
In der aktuellen Studie wurde Graphen, eine nur ein Atom dicke Lage aus Kohlenstoffatomen, in die einzelne Siliziumatome eigebettet sind, getestet. Die Siliziumatome ragen aufgrund ihres Größenunterschiedes aus der Ebene der Kohlenstoffatome heraus. "Wir kamen mithilfe detaillierter Computersimulationen zum Schluss, dass das Material durch Beschuss mit Elektronen manipuliert werden kann, ohne dieses zu beschädigen. Dafür haben wir eine Beschleunigungsspannung von 60.000 Volt benötigt", so Toma Susi, Erstautor und FWF-Lise-Meitner-Stipendiat an der Universität Wien: "Voraussetzung für diese High-Tech-Experimente ist ein modernes hochauflösendes Ultra-Hochvakuum-Raster-Transmissionselektronenmikroskop, von denen es derzeit weltweit
nur etwa zehn gibt. Die Universität Wien verfügt über ein derartiges Gerät, das mit einer Auflösung von weniger als ein Ångström, das ist ein Zehnmillionstel Millimeter, nahezu alle atomaren Abstände auflösen kann. Damit habe ich meine komplexen Untersuchungen durchgeführt." Das Team in Daresbury (UK) arbeitete ebenfalls mit einem solchen Mikroskop.

Vergleich der Messergebnisse mit Computersimulationen
Die Computerberechnungen haben gezeigt, dass Kohlenstoffatome in unmittelbarer Nachbarschaft der Siliziumatome weniger stark gebunden sind als jene Kohlenstoffatome, die weit entfernt von den Siliziumatomen liegen. Dadurch können die ForscherInnen mit dem Elektronenstrahl ein Nachbaratom eines Siliziumatoms nur gerade soweit aus dem Gitter stoßen, dass das Siliziumatom und das Kohlenstoffatom ihre Plätze tauschen. Dieser Platztausch wurde von beiden Forschungsteams direkt im Elektronenmikroskop beobachtet. Durch Analyse von etwa 40 solcher aufgenommenen Prozesse konnten die ForscherInnen herausfinden, dass es sich bei dem Platztausch um einen stochastischen Prozess handelt und dessen Wahrscheinlichkeit bestimmen. Ein direkter Vergleich der Messergebnisse mit den Computersimulationen zeigte eine beeindruckende Übereinstimmung.

Elektronenstrahl steuert Platzwechsel der Siliziumatome
Neben der Bedeutung für die Physik eröffnen diese Ergebnisse sehr vielversprechende Möglichkeiten für die gezielte Erzeugung von Strukturen aus einzelnen Atomen. "Was unsere Ergebnisse wahrlich beeindruckend macht, ist, dass dieser Platzwechselprozess steuerbar ist, da das Siliziumatom immer an die Stelle, die vom Elektronenstrahl getroffen wird, springt", so Toma Susi, Physiker an der Universität Wien. "Das ermöglicht uns, die Bewegung jedes einzelnen Siliziumatoms auf das Genaueste zu steuern. Vielleicht sehen wir bald neue Quantenstrukturen oder das Logo einer Universität – geschrieben aus Siliziumatomen in Graphen."

Publikation in Physical Review Letters:
Silicon-carbon bond inversions driven by 60 keV electrons in graphene: T. Susi, J. Kotakoski, D. Kepaptsoglou, C. Mangler, T.C. Lovejoy, O.L. Krivanek, R. Zan, U. Bangert, P. Ayala, J.C. Meyer & Q. Ramasse. Physical Review Letters, August 2014.
DOI: 10.1103/PhysRevLett.113.115501

Video Animation:
Visualisierung der Silizium-Kohlenstoff-Bindungsinversion
http://youtu.be/44qT1PcqPFI

Video Abstract:
Erstautor Toma Susi erklärt sein Forschungsprojekt
http://youtu.be/WCl7DFVVC-M

Blogeintrag Toma Susi (Mostly physics):
"Moving silicon atoms in graphene with atomic precision"
http://mostlyphysics.wordpress.com/2014/09/11/story-of-another-article/

Wissenschaftlicher Kontakt
Dr. Toma Susi

Tailored Hybrid Structures
Elektronische Materialeigenschaften
Fakultät für Physik
Universität Wien
1090 Wien, Boltzmanngasse 5

T +43-1-4277-726 14
M +43-664-527 3054
toma.susi@univie.ac.at

Rückfragehinweis
Mag. Veronika Schallhart
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 15 Fakultäten und vier Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.900 WissenschafterInnen. Die Universität Wien ist damit auch die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 92.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. 1365 gegründet, feiert die Alma Mater Rudolphina Vindobonensis im Jahr 2015 ihr 650-jähriges Gründungsjubiläum. www.univie.ac.at

Alexandra Frey | Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Bilder magnetischer Strukturen auf der Nano-Skala
20.04.2018 | Georg-August-Universität Göttingen

nachricht Licht macht Ionen Beine
20.04.2018 | Max-Planck-Institut für Festkörperforschung, Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics