Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Weg zur Feinstrukturkonstante

10.03.2016

Theoretische Grundlage für zukünftige Präzisionsmessungen gelegt

Physiker wollen immer Alles ganz genau wissen. Auch wenn die vor 100 Jahren von Arnold Sommerfeld eingeführte Feinstrukturkonstante – sie erklärt die Aufspaltung von Spektrallinien – bis auf 10 Nachkommastellen genau bekannt ist, wird doch nach Methoden gesucht, diese noch präziser zu messen.


Die Feinstrukturkonstante α bestimmt die genaue Stärke der Anziehungskraft zwischen Elektronen und Kern, und damit auch die Wechselwirkungsstärke der Elektronen mit einem Magnetfeld.

Grafik: MPIK

Theoretiker des MPI für Kernphysik haben nun einen Weg aufgezeigt, wie über magnetische Messungen an Ionen mit nur wenigen Elektronen dieses Ziel erreichbar wird. Dazu haben sie berechnet, wie der die Messgenauigkeit beeinträchtigende Einfluss des Atomkerns zum Verschwinden gebracht werden kann.

Als gegen Ende des 19. Jahrhunderts die Auflösung der optischen Spektrometer besser geworden war, stellte sich heraus, dass scheinbar einzelne Linien in den Spektren von Atomen in Wirklichkeit aus Gruppen von Linien bestehen.

Zur Erklärung dieser Aufspaltung der Spektrallinien hat Arnold Sommerfeld 1916 die sogenannte Feinstrukturkonstante eingeführt, die sich als eine wichtige Größe in der Spektroskopie erwies. Ursachen der Feinstrukturaufspaltung sind relativistische Effekte und der Spin der Elektronen, die sich wie winzige kreiselnde Stabmagnete verhalten.

Im Prinzip eignen sich alle atomaren Systeme zur Bestimmung der Feinstrukturkonstante, weil diese die genaue Stärke der elektromagnetischen Anziehung zwischen den negativ geladenen Elektronen und dem positiv geladenen Atomkern angibt – das ist die Kraft, die Atome zusammenhält. Alle Eigenschaften eines Atoms sind von dieser Kraft und damit vom Wert der Feinstrukturkonstante abhängig. Atome mit vielen Elektronen sind aber theoretisch schwer zu behandeln, weil die vielen Elektronen sich gegenseitig beeinflussen. Deswegen wählt man Ionen mit wenigen Elektronen, am liebsten mit nur einem einzigen Elektron.

Theoretiker des MPI für Kernphysik um Zoltán Harman, Gruppenleiter in der Abteilung von Christoph Keitel, schlagen zusammen mit Kollegen aus St. Petersburg eine neuartige Methode vor, die Sommerfeldsche Feinstrukturkonstante über magnetische Messungen an Ionen zu bestimmen, die sich in Ionenfallen sehr präzise durchführen lassen.

Resultat ist das magnetische Moment des im Ion gebundenen Elektrons. Das magnetische Moment beschreibt, wie stark der "Stabmagnet" des kreiselnden Elektrons mit einem Magnetfeld wechselwirkt. Diese "Magnetstärke" eignet sich zur Präzisionsbestimmung der Stärke der Anziehungskraft zwischen Elektron und Kern.

Mit den Methoden der Quantenphysik kann man genau berechnen, wie das magnetische Moment von der Feinstrukturkonstante abhängt. Ein großes Hindernis stellt aber der Atomkern dar: er ist ein kompliziertes System aus Protonen und Neutronen, und seine Struktur ist nicht so gut verstanden wie sich die Präzisionsphysiker wünschen.

Das ist am schwierigsten bei den eigentlich idealen schweren Elementen. Deswegen wenden der Erstautor Vladimir Yerokhin und Kollegen einen Trick an: sie betrachten nicht nur ein einziges Ion, sondern zwei Ionen mit demselben Kern, aber mit einem bzw. drei Elektronen. Durch eine ausgeklügelte Kombination der magnetischen Momente der beiden Ionen bringen sie die störende, quantitativ unvollständig bekannte Kernstruktur dazu, aus der Gleichung zu verschwinden. Das funktioniert am besten bei Ionen leichter Elemente, die experimentell auch leichter zu erzeugen sind.

„Mit Präzisionsmessungen an unterschiedlich geladenen Ionen mehrerer leichter Elemente sollte es zukünftig möglich sein, die Genauigkeit der derzeit auf 10 Nachkommastellen genau bekannten Feinstrukturkonstante zu verbessern“, erwartet Zoltán Harman. Solche Messungen könnten zukünftig die Ionenfallenexperten der Abteilung von Klaus Blaum am Institut durchführen.

Eine früher vorgeschlagene Methode mit Messungen von zwei Ionen eines schweren Elements erlaubt dagegen keine wesentliche Steigerung der Genauigkeit. Da die Feinstrukturkonstante eng mit anderen physikalischen Konstanten des Elektromagnetismus verbunden ist, kann eine Präzisionssteigerung auch zur Verfeinerung der SI-Basiseinheiten beitragen.

Originalpublikation:

g-factor of light ions for an improved determination of the fine-structure constant
V. A. Yerokhin, E. Berseneva, Z. Harman, I. I. Tupitsyn, and C. H. Keitel
Physical Review Letters 116, 100801 (2016), doi: 10.1103/PhysRevLett.116.100801

Kontakt:

PD Dr. Zoltán Harman
Tel.: 06221 516170
E-Mail: zoltan.harman(at)mpi-hd.mpg.de

Hon.-Prof. Dr. Christoph H. Keitel
Tel.: 06221 516 150
E-Mail: christoph.keitel(at)mpi-hd.mpg.de

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik
Weitere Informationen:
http://www.mpi-hd.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten