Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Schritt auf dem Weg zum Quanten-Computer - Ultrastarke Wechselwirkung zwischen Licht und Materie

29.07.2010
Weltweit arbeiten Forscher an der Entwicklung des Quanten-Computers, der den bisherigen Computern haushoch überlegen wäre. Die starke Kopplung von Quanten-Bits mit Lichtquanten ist dabei ein Schlüsselprozess. Ein Team um Professor Rudolf Gross, Physiker an der Technischen Universität München (TUM), hat nun eine extrem starke Wechselwirkung zwischen Licht und Materie erzielt, die ein erster Schritt in diese Richtung sein könnte. Ihre Ergebnisse stellen sie in der aktuellen Online-Ausgabe des Magazins Nature Physics vor.

Die Wechselwirkung zwischen Licht und Materie ist einer der fundamentalsten Prozesse der Physik. Ob sich unser Auto im Sommer aufgrund der Absorption von Lichtquanten in einen Backofen verwandelt, ob Solarzellen aus Licht Strom gewinnen oder Leuchtdioden Strom in Licht umwandeln, überall in unserem täglichen Leben begegnen wir Auswirkungen dieser Prozesse. Auch für die Entwicklung der so genannten Quanten-Computer ist das Verständnis der Wechselwirkungen zwischen einzelnen Lichtteilchen, Photonen, und Atomen entscheidend.

Physiker der Technischen Universität München (TUM), des Walther-Meißner-Instituts für Tieftemperaturforschung der Bayerischen Akademie der Wissenschaften (WMI) und der Universität Augsburg haben nun zusammen mit Partnern aus Spanien eine ultrastarke Wechselwirkung von Mikrowellen-Photonen mit den Atomen eines nanostrukturierten Schaltkreises realisiert. Die erreichte Wechselwirkung ist zehnmal stärker als die bisher für solche Systeme erzielten Werte.

Das einfachste System zur Untersuchung der Wechselwirkung zwischen Licht und Materie besteht aus einem so genannten Hohlraum-Resonator, in dem genau ein Lichtteilchen, ein Photon, und ein Atom eingesperrt sind (Cavity quantum electrodynamics, cavity QED). Die Experimente sind hierbei extrem aufwändig, da die Wechselwirkung sehr schwach ist. Eine sehr viel stärkere Wechselwirkung lässt sich mit nanostrukturierten Schaltkreisen erzielen, in denen bei Temperaturen knapp über dem absoluten Nullpunkt Metalle wie Aluminium supraleitend werden (circuit QED). Richtig aufgebaut verhalten sich die vielen Milliarden Atome der nur wenige Nanometer dicken Leiterbahnen des Schaltkreises so wie ein einziges künstliches Atom und gehorchen den Gesetzen der Quantenmechanik. Im einfachsten Fall erhält man so ein System mit zwei Energiezuständen, ein so genanntes Quanten-Bit oder Qbit.

Die Kopplung solcher Systeme mit Mikrowellen-Resonatoren hat sich zu einem rasch wachsenden neuen Forschungsgebiet entwickelt, auf dem die TUM-Physik, das WMI und der Exzellenzcluster Nanosystems Initiative Munich (NIM) eine weltweit führende Stellung einnehmen. Anders als bei cavity QED-Systemen können die Wissenschaftler die nano-Schaltkreise in weiten Bereichen gezielt maßschneidern.

Für seine Messungen fing das Team um Professor Gross das Photon in einer speziellen Box ein, einem Resonator. Dieser besteht aus einer supraleitenden Niob-Leiterbahn, die an beiden Enden mit für Mikrowellen sehr gut reflektierenden „Spiegeln“ ausgestattet ist. In diesem Resonator wird das künstliche, aus einem Aluminium-Schaltkreis bestehende Atom so platziert, dass es mit dem Photon optimal wechselwirken kann. Die ultrastarken Wechselwirkungen erzielten die Forscher, indem sie ein weiteres supraleitendes Bauteil in ihren Schaltkreis einfügten, einen so genannten Josephson-Kontakt.

Die gemessene Wechselwirkungsstärke erreichte bis zu zwölf Prozent der Resonatorfrequenz. Sie ist damit zehnmal stärker als bisher in circuit QED Systemen gemessene Wechselwirkungen und viele tausendmal stärker als die in echten Hohlraum-Resonatoren messbaren Effekte. Doch mit dem Erfolg schufen die Wissenschaftler auch ein neues Problem: Bisher beschrieb die schon 1963 entwickelte Jaynes-Cummings-Theorie alle beobachteten Effekte gut. Im Gebiet der ultrastarken Wechselwirkungen scheint sie jedoch nicht mehr zu gelten. „Die Spektren sehen so aus, als hätten wir es hier mit einem völlig neuen Objekt zu tun”, sagt Professor Gross. „Die Kopplung ist so stark, dass das Atom-Photon-Paar als eine neue Einheit betrachtet werden muss, eine Art Molekül aus einem Atom und einem Photon.“

Dies genauer zu untersuchen, wird Experimentalphysiker und Theoretiker noch eine Weile beschäftigen. Experimentell in diesen Bereich vorstoßen zu können, eröffnet den Wissenschaftlern aber jetzt schon eine Vielzahl neuer experimenteller Möglichkeiten. Die gezielte Manipulation solcher Paare aus Atom und Photon könnte der Schlüssel zur Quanten-basierten Informationsverarbeitung sein, den so genannten Quanten-Computern, die den heutigen Computern haushoch überlegen wären.

Die Arbeiten wurden finanziell unterstützt aus Mitteln der Exzellenzinitiative (Exzellenzcluster Nanosystems Initiative Munich), Mitteln des SFB 631 der Deutschen Forschungsgemeinschaft (DFG), aus Mitteln der Europäischen Gemeinschaft (EuroSQIP, SOLID) sowie aus Mitteln des spanischen Ministeriums für Wissenschaft und Innovation.

Originalpublikation:

Circuit quantum electrodynamics in the ultrastrong-coupling regime
T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx and R. Gross

Nature Physics, published online 25. Juli 2010 – DOI: 10.1038/NPHYS1730

Kontakt:

Prof. Dr. Rudolf Gross
Technische Universität München – Physik-Department und
Walther-Meißner-Institut der Bayerischen Akademie der Wissenschaften
Walther-Meißner-Str. 6 
85748 Garching, Germany
Tel.: +49 89 289 14201
, Fax: +49 89 289 14206
E-Mail: Rudolf.Gross@wmi.badw.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www.wmi.badw.de
http://www.nature.com/nphys/journal/vaop/ncurrent/abs/nphys1730.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Atome rennen sehen - Phasenübergang live beobachtet
30.03.2017 | Universität Duisburg-Essen

nachricht Flipper auf atomarem Niveau
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE