Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

22.05.2017

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten Ionisations- und Dissoziationsmechanismen einen neuen Reaktionsweg beobachtet und identifiziert. Dabei übertragen schwingende Atomkerne ihre Bewegungsenergie auf das Elektron und setzen dieses frei.
[Physical Review Letters, 5. Mai 2017]


Abb. 1: Reaktionspfade zur Ionisation und Dissoziation von molekularem Wasserstoff in einem intensiven Femtosekunden-Laserpuls.

Grafik: MPI für Kernphysik


Abb. 2: (a) Elektronenspektrum für gebundene (blau) und dissoziative (rot) Ionisation von H2. (b) Links-Rechts-Asymmetrie der Elektronen. Grün schattiert: Beitrag der Autoionisation.

Grafik: MPI für Kernphysik

Ultrakurze Laserpulse spielen eine Schlüsselrolle für die Kontrolle molekularer Reaktionen, da sie direkt auf die Dynamik der für die chemische Bindung verantwortlichen Elektronen Einfluss nehmen. Die wesentlich schwereren Kerne bewegen sich deutlich langsamer und werden damit nur indirekt beeinflusst. In vielen Fällen ist daher auch die Näherung zulässig, dass sich die räumliche Verteilung der Elektronenhülle an die sich langsam ändernde molekulare Struktur anpasst.

Physiker der Gruppe um Robert Moshammer in der Abteilung von Thomas Pfeifer am Heidelberger MPI für Kernphysik haben nun einen unerwarteten Reaktionsweg identifizieren können, bei welchem obige Näherung nicht mehr gültig ist. Betrachtet wurde die einfache Ionisation des Wasserstoffmoleküls H2 in einem starken Laserfeld, wobei eines der beiden Elektronen das Molekül verlässt.

Das verbleibende Molekülion H2+ kann entweder stabil bleiben oder aber in ein Proton (H+) und ein neutrales Wasserstoffatom (H) zerbrechen („dissoziieren“). Die dissoziative Ionisation stellen sich die Wissenschaftler als zweistufigen Prozess vor: Zuerst werden mehrere Photonen aus dem Laserfeld absorbiert, um ein Elektron freizusetzen.

Das H2+-Molekülion kann dann durch Absorption eines weiteren Photons in einen nicht mehr gebundenen Zustand angeregt werden und bricht auseinander (Abb. 1 links). Hierbei „weiß“ das freie Elektron nichts von dem nachfolgenden Prozess und daher sollte es sich in beiden Fällen gleich verhalten.

Überraschenderweise ist dies aber nicht der Fall: Abb. 2a zeigt das Spektrum des Elektrons, also wie häufig es mit einer bestimmten Geschwindigkeit – ausgedrückt durch die kinetische Energie – das Molekül verlässt. Im Vergleich finden sich deutlich mehr langsame Elektronen für den Fall, dass das Molekülion gebunden bleibt (blaue Kurve) als wenn es dissoziiert (rote Kurve), während sich für schnelle Elektronen kein Unterschied zeigt. Dies deutet auf einen weiteren Ionisationsmechanismus hin, der langsame Elektronen produziert ohne dass die chemische Bindung aufbricht.

Nun ist bekannt, dass sich die Kerne nach der Ionisation nicht mehr im Gleichgewicht befinden und dadurch in Schwingungen gegeneinander versetzt werden – so wie ein Pendel, das plötzlich zur Seite bewegt wird. Dies geschieht auch, wenn das Elektron vom Laserfeld nicht gleich freigesetzt wird, sondern nur einen hochangeregten Zustand erreicht, in welchem es in großem Abstand die Kerne umkreist (Abb. 1 rechts).

Jetzt kann Bewegungsenergie der schwingenden Kerne auf das schwach gebundene Elektron übertragen werden und dieses regelrecht „abschütteln“. Dieser Autoionisation genannte Prozess braucht aber Zeit – länger als die Dauer (ca. 25 Femtosekunden = 2,5x10–14 s) eines ultrakurzen Laserpulses.

Diese Eigenschaft haben die Physiker nun für folgenden Trick genutzt, um das Modell zu testen: Sie überlagerten den Laserpuls mit einem weiteren der doppelten Frequenz und erreichen damit, dass das elektrische Feld je nach Einstellung vorzugsweise in die eine oder entgegengesetzte Richtung (links bzw. rechts) weist. Dies wiederum bewirkt eine asymmetrische räumliche Verteilung der freigesetzten Elektronen – ihnen wird bevorzugt die eine bzw. entgegengesetzte Flugrichtung aufgeprägt. Verlässt aber ein Elektron erst nach Abklingen des Laserpulses das Molekül durch Autoionisation, erfährt es diese Asymmetrie nicht.

Das Ergebnis in Abb. 2b zeigt, dass die Asymmetrie im Bereich langsamer Elektronen für dissoziative Ionisation deutlich größer ist, als wenn das Molekül gebunden bleibt. Ein bestimmter Anteil (laut Abb. 2a bis zu 1/4) der Elektronen kann hier also erst zeitlich nach dem Laserpuls freigesetzt worden sein und stammt folglich aus der Autoionisation.

Originalveröffentlichung:

Electron-Nuclear Coupling through Autoionizing States after Strong-Field Excitation of H2 Molecules
Yonghao Mi, Nicolas Camus, Lutz Fechner, Martin Laux, Robert Moshammer and Thomas Pfeifer
Phys. Rev. Lett. 188, 183201 (2017); DOI: 10.1103/PhysRevLett.118.183201

Kontakt:

Dr. Robert Moshammer
MPI für Kernphysik
Tel.: +49 6221-516-461
E-Mail: robert.moshammer(at)mpi-hd.mpg.de

Prof. Dr. Thomas Pfeifer
MPI für Kernphysik
Tel.: +49 6221-516-380
E-Mail: thomas.pfeifer(at)mpi-hd.mpg.de

Weitere Informationen:

https://www.mpi-hd.mpg.de/mpi/de/pfeifer/pfeifer-division-home Abteilung „Quantum Dynamics and Control“ am MPIK
https://www.mpi-hd.mpg.de/mpi/aktuelles/meldung/detail/neuer-ionisationsweg-in-m... Presseinformation des MPIK
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.183201 Orginialveröffentlichung

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Nano-Uhr mit präzisen Zeigern
21.11.2017 | Universität Wien

nachricht ESO-Beobachtungen zeigen, dass der erste interstellare Asteroid mit nichts vergleichbar ist, was wir bisher kennen
21.11.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wasserkühlung für die Erdkruste - Meerwasser dringt deutlich tiefer ein

21.11.2017 | Geowissenschaften

Eine Nano-Uhr mit präzisen Zeigern

21.11.2017 | Physik Astronomie

Zentraler Schalter

21.11.2017 | Biowissenschaften Chemie