Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Effekt in Tunnelelementen entdeckt

26.07.2011
Ein internationales Forscherteam mit Wissenschaftlern der Universitäten Gießen, Göttingen und Bielefeld sowie des Massachusetts Institute of Technology (MIT), USA, hat eine neue Methode entwickelt, die Effekte der Thermoelektrik und des Magnetismus in magnetischen Tunnelelementen zu kombinieren.

Insbesondere ist es gelungen, die Thermospannung, den so genannten Seebeck-Effekt, der Elektronen in einem magnetischen Tunnelelement durch die Veränderung der Magnetisierung gezielt zu beeinflussen. Die Online-Ausgabe der Fachzeitschrift „Nature Materials“ hat nun diese Forschungsergebnisse veröffentlicht.


Magnetisches Tunnelelement bestehend aus zwei magnetischen Schichten einer Eisen-Cobalt-Legierung, die durch eine Magnesiumoxidschicht voneinander getrennt sind. Dargestellt sind die einzelnen Atome.

Das neue Forschungsgebiet „Spinkaloritronik“ verbindet zwei physikalische Effekte: die Thermoelektrik und den Magnetismus. Innerhalb der Thermoelektrik ist der Seebeck-Effekt besonders wichtig. Bei diesem Effekt wird eine elektrische Spannung durch einen Temperaturunterschied erzeugt. Damit ist es möglich, Abwärme in elektrische Energie umzuwandeln und so die Energieeffizienz zu erhöhen, was im Hinblick auf die bevorstehende Energiewende von besonderer Bedeutung ist. Auf dem Gebiet der Thermoelektrik wird bereits seit mehreren Jahren an der Justus-Liebig-Universität Gießen in der Physik und in der Chemie intensiv geforscht.

Der Magnetismus in Materialien wird durch den so genannten Spin hervorgerufen. Insbesondere Elektronen besitzen einen Spin, der bildhaft gesprochen die Drehung des Elektrons um seine eigene Achse beschreibt. Betrachtet man nun elektronische Bauelemente im Nanometerbereich, so wird der Magnetismus unter anderem in so genannten Tunnelelementen ausgenutzt. Diese magnetischen Tunnelelemente sind elektronische Bauelemente, die aus zwei magnetischen Schichten bestehen, die durch eine nur wenige Atomlagen dicke Oxidschicht getrennt sind. Obwohl die Oxidschicht isolierend wirkt, können Elektronen diese Barriere durchtunneln. „Tunneln“ beschreibt einen quantenmechanischen Effekt, der nur in kleinsten Strukturen zu beobachten ist. Diese Tunnelelemente werden zum Beispiel bereits in Festplatten als Lesekopf verwendet. Aktuell wird der Einsatz dieser magnetischen Tunnelelemente als nichtflüchtiges Speicherelement in Computern erforscht. Dabei bleiben die gespeicherten Informationen auch ohne Stromversorgung erhalten. In Gießen wird diese Anwendung in der Arbeitsgruppe von Prof. Dr. Christian Heiliger am I. Physikalischen Institut bereits seit einigen Jahren theoretisch untersucht.

Der neu entdeckte Effekt des Schaltens der Thermospannung in magnetischen Tunnelelementen hat den Namen Magneto-Seebeck-Effekt erhalten. Dieser Effekt ist in der Arbeitsgruppe von Prof. Christian Heiliger vorhergesagt worden, wobei eine Vergrößerung der Thermospannung um mehr als 1.000 Prozent möglich ist. In Zusammenarbeit mit experimentellen Arbeitsgruppen in Göttingen und Bielefeld ist es nun gelungen, den Magneto-Seebeck-Effekt in Tunnelelementen experimentell zu bestätigen. Dabei wird eine der beiden magnetischen Schichten in einem Tunnelelement mit Laserimpulsen aufgeheizt, was zu einer Thermospannung führt. Diese Thermospannung ändert sich, wenn die Magnetisierung verändert wird. Gerade dies ist der neue Magneto-Seebeck-Effekt.

„Einen neuen physikalischen Effekt zu entdecken ist natürlich besonders aufregend. Durch eine intensive Zusammenarbeit mit den experimentell arbeitenden Kollegen in Göttingen und Bielefeld ist es uns gelungen, den von uns vorhergesagten Magneto-Seebeck-Effekt in Tunnelelementen experimentell zu bestätigen. Zukünftige Anwendungen sind allerdings noch spekulativ, aber es ergibt sich die viel versprechende Möglichkeit, die Energieumwandlung in kleinsten Elementen lokal zu steuern, um so zum Beispiel in Mikroprozessoren entstehende Abwärme gezielt zu nutzen“, so Prof. Heiliger. Er leitet am I. Physikalischen Institut der Universität Gießen eine Forschergruppe auf dem Gebiet der Festkörpertheorie.

Die gemeinsame Forschung der Arbeitsgruppen an den drei deutschen Universitäten wird seit Juli 2011 im Rahmen des neuen Schwerpunktprogramms „Spin Caloric Transport (SpinCat) – SPP 1538“ der Deutschen Forschungsgemeinschaft (DFG) mit rund einer Millionen Euro gefördert. In die theoretische Erforschung des neuen Effekts gehen davon 226.000 Euro an die Justus-Liebig-Universität Gießen.

Originalveröffentlichung:
Marvin Walter, Jakob Walowski, Vladyslav Zbarsky, Markus Münzenberg, Markus Schäfers, Daniel Ebke, Günter Reiss, Andy Thomas, Patrick Peretzki, Michael Seibt, Jagadeesh S. Moodera, Michael Czerner, Michael Bachmann & Christian Heiliger, Seebeck effect in magnetic tunnel junctions, Nature Materials, published online 24 July 2011, DOI: 10.1038/NMAT3076
Kontakt:
Prof. Dr. Christian Heiliger
Justus-Liebig-Universität Gießen
I. Physikalisches Institut
Heinrich-Buff-Ring 16, 35392 Gießen
Telefon: 0641 99-33152
E-Mail: christian.heiliger@physik.uni-giessen.de

Christel Lauterbach | idw
Weitere Informationen:
http://www.uni-giessen.de
http://dx.doi.org/10.1038/NMAT3076

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle
07.12.2016 | Goethe-Universität Frankfurt am Main

nachricht Das Universum enthält weniger Materie als gedacht
07.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie