Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Effekt in Tunnelelementen entdeckt

26.07.2011
Ein internationales Forscherteam mit Wissenschaftlern der Universitäten Gießen, Göttingen und Bielefeld sowie des Massachusetts Institute of Technology (MIT), USA, hat eine neue Methode entwickelt, die Effekte der Thermoelektrik und des Magnetismus in magnetischen Tunnelelementen zu kombinieren.

Insbesondere ist es gelungen, die Thermospannung, den so genannten Seebeck-Effekt, der Elektronen in einem magnetischen Tunnelelement durch die Veränderung der Magnetisierung gezielt zu beeinflussen. Die Online-Ausgabe der Fachzeitschrift „Nature Materials“ hat nun diese Forschungsergebnisse veröffentlicht.


Magnetisches Tunnelelement bestehend aus zwei magnetischen Schichten einer Eisen-Cobalt-Legierung, die durch eine Magnesiumoxidschicht voneinander getrennt sind. Dargestellt sind die einzelnen Atome.

Das neue Forschungsgebiet „Spinkaloritronik“ verbindet zwei physikalische Effekte: die Thermoelektrik und den Magnetismus. Innerhalb der Thermoelektrik ist der Seebeck-Effekt besonders wichtig. Bei diesem Effekt wird eine elektrische Spannung durch einen Temperaturunterschied erzeugt. Damit ist es möglich, Abwärme in elektrische Energie umzuwandeln und so die Energieeffizienz zu erhöhen, was im Hinblick auf die bevorstehende Energiewende von besonderer Bedeutung ist. Auf dem Gebiet der Thermoelektrik wird bereits seit mehreren Jahren an der Justus-Liebig-Universität Gießen in der Physik und in der Chemie intensiv geforscht.

Der Magnetismus in Materialien wird durch den so genannten Spin hervorgerufen. Insbesondere Elektronen besitzen einen Spin, der bildhaft gesprochen die Drehung des Elektrons um seine eigene Achse beschreibt. Betrachtet man nun elektronische Bauelemente im Nanometerbereich, so wird der Magnetismus unter anderem in so genannten Tunnelelementen ausgenutzt. Diese magnetischen Tunnelelemente sind elektronische Bauelemente, die aus zwei magnetischen Schichten bestehen, die durch eine nur wenige Atomlagen dicke Oxidschicht getrennt sind. Obwohl die Oxidschicht isolierend wirkt, können Elektronen diese Barriere durchtunneln. „Tunneln“ beschreibt einen quantenmechanischen Effekt, der nur in kleinsten Strukturen zu beobachten ist. Diese Tunnelelemente werden zum Beispiel bereits in Festplatten als Lesekopf verwendet. Aktuell wird der Einsatz dieser magnetischen Tunnelelemente als nichtflüchtiges Speicherelement in Computern erforscht. Dabei bleiben die gespeicherten Informationen auch ohne Stromversorgung erhalten. In Gießen wird diese Anwendung in der Arbeitsgruppe von Prof. Dr. Christian Heiliger am I. Physikalischen Institut bereits seit einigen Jahren theoretisch untersucht.

Der neu entdeckte Effekt des Schaltens der Thermospannung in magnetischen Tunnelelementen hat den Namen Magneto-Seebeck-Effekt erhalten. Dieser Effekt ist in der Arbeitsgruppe von Prof. Christian Heiliger vorhergesagt worden, wobei eine Vergrößerung der Thermospannung um mehr als 1.000 Prozent möglich ist. In Zusammenarbeit mit experimentellen Arbeitsgruppen in Göttingen und Bielefeld ist es nun gelungen, den Magneto-Seebeck-Effekt in Tunnelelementen experimentell zu bestätigen. Dabei wird eine der beiden magnetischen Schichten in einem Tunnelelement mit Laserimpulsen aufgeheizt, was zu einer Thermospannung führt. Diese Thermospannung ändert sich, wenn die Magnetisierung verändert wird. Gerade dies ist der neue Magneto-Seebeck-Effekt.

„Einen neuen physikalischen Effekt zu entdecken ist natürlich besonders aufregend. Durch eine intensive Zusammenarbeit mit den experimentell arbeitenden Kollegen in Göttingen und Bielefeld ist es uns gelungen, den von uns vorhergesagten Magneto-Seebeck-Effekt in Tunnelelementen experimentell zu bestätigen. Zukünftige Anwendungen sind allerdings noch spekulativ, aber es ergibt sich die viel versprechende Möglichkeit, die Energieumwandlung in kleinsten Elementen lokal zu steuern, um so zum Beispiel in Mikroprozessoren entstehende Abwärme gezielt zu nutzen“, so Prof. Heiliger. Er leitet am I. Physikalischen Institut der Universität Gießen eine Forschergruppe auf dem Gebiet der Festkörpertheorie.

Die gemeinsame Forschung der Arbeitsgruppen an den drei deutschen Universitäten wird seit Juli 2011 im Rahmen des neuen Schwerpunktprogramms „Spin Caloric Transport (SpinCat) – SPP 1538“ der Deutschen Forschungsgemeinschaft (DFG) mit rund einer Millionen Euro gefördert. In die theoretische Erforschung des neuen Effekts gehen davon 226.000 Euro an die Justus-Liebig-Universität Gießen.

Originalveröffentlichung:
Marvin Walter, Jakob Walowski, Vladyslav Zbarsky, Markus Münzenberg, Markus Schäfers, Daniel Ebke, Günter Reiss, Andy Thomas, Patrick Peretzki, Michael Seibt, Jagadeesh S. Moodera, Michael Czerner, Michael Bachmann & Christian Heiliger, Seebeck effect in magnetic tunnel junctions, Nature Materials, published online 24 July 2011, DOI: 10.1038/NMAT3076
Kontakt:
Prof. Dr. Christian Heiliger
Justus-Liebig-Universität Gießen
I. Physikalisches Institut
Heinrich-Buff-Ring 16, 35392 Gießen
Telefon: 0641 99-33152
E-Mail: christian.heiliger@physik.uni-giessen.de

Christel Lauterbach | idw
Weitere Informationen:
http://www.uni-giessen.de
http://dx.doi.org/10.1038/NMAT3076

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie