Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein neuer Dreh für Quantensysteme

18.04.2013
Physiker der ETH Zürich haben eine Methode entwickelt, um Quantensysteme präzise steuern zu können. Dafür nutzen sie einen Trick, der auch Katzen hilft, auf den Pfoten zu landen, und Autofahrern, seitlich einzuparkieren. Die Methode könnte zur Entwicklung von zuverlässigen Quantenrechnern führen.

Ein Auto in eine Parklücke längs der Fahrbahn zu manövrieren, kann eine grosse Herausforderung sein. Einfach wäre die Aufgabe freilich, wenn sich das Fahrzeug seitwärts bewegen liesse. Da dies nicht möglich ist, muss die Verschiebung zur Seite durch eine Aneinanderreihung von Vor- und Rückwärtsbewegungen und von Lenkeinschlägen mehr oder weniger elegant zusammengestückelt werden.


Greifbare Quantenobjekte: Diese Mikrowellenresonatoren (links) messen 32 x 15 x 5 Millimeter und beherbergen supraleitende Schaltkreise (Mitte und rechts), die ein ähnliches Quantenverhalten an den Tag legen wie Atome.
Bild: Abdufarrukh Abdumalikov / ETH Zürich

Eine solch fein abgestimmte Abfolge von Bewegungen ist es auch, die es Katzen ermöglicht, nach einem freien Fall stets auf ihren Pfoten zu landen. Ein ähnliches Prinzip haben Forschende der ETH Zürich nun dazu verwendet, ein Quantensystem in einen vorgegebenen Zustand zu lenken. Diese neue Art der Kontrolle sollte in Situationen nützlich sein, in denen Quantensysteme präzise gesteuert werden müssen, im Besonderen im Zusammenhang mit Quantenrechnern.

Greifbare Quantenwelt

Für ihre Forschung arbeiten die Wissenschaftler in der Gruppe von Andreas Wallraff, Professor am Laboratorium für Festkörperphysik, mit «künstlichen Atomen» aus elektronischen Schaltkreisen, die sie mit Mikrowellenpulsen steuern. Diese Schaltkreise beinhalten supraleitende Komponenten – Bauteile also, in denen ein elektrischer Strom ohne Widerstand fliessen kann –, sie messen typischerweise Bruchteile eines Millimeters. «Für einen Quantenphysiker sind diese Schaltkreise enorm grosse Objekte, aber sie legen ein Verhalten an den Tag, das dem von Atomen sehr ähnlich ist», erklärt Wallraff.

Die Forscher setzen auf solche Schaltkreise, weil deren Design und deren Eigenschaften im Vergleich zu natürlichen Quantensystemen – wie etwa Atome, Elektronen oder Photonen – einfach für verschiedene Anwendungen angepasst werden können. Ausserdem können die Wissenschaftler in diesen supraleitenden Schaltkreisen fragile Quantenzustände während mehrerer Mikrosekunden aufrechterhalten, was einer verhältnismässig langen Zeit entspricht. Diese Zeit kann dazu genutzt werden, die Zustände mit den Mikrowellenpulsen zu manipulieren, sei es, um die Quantenzustände selbst zu untersuchen, oder um sie in einem Quantenrechner zu verwenden.

Den richtigen Dreh gefunden

Den Quantenzuständen droht jedoch Gefahr von aussen: Ebenso wie natürliche Quantensysteme sind auch die Quanten-Schaltkreise höchst empfindlich gegenüber Störungen, verursacht etwa durch nicht perfekte Abschirmungen. Die ETH-Forscher haben nun unter der Leitung von Stefan Filipp, Wissenschaftler in der Gruppe von Wallraff, einen möglichen Weg gefunden, um die Steuerung stabil gegenüber Störeinflüssen zu machen. Sie nutzen dafür die Geometrie des sogenannten Hilbert-Raumes aus. Dieser abstrakte Raum ist der «natürliche Lebensraum» eines quantenmechanischen Systems. Ebenso wie ein Auto durch einen zweidimensionalen Raum gesteuert wird, kann ein Quantensystem durch den Hilbert-Raum bewegt werden.
Sowohl beim Einparkieren wie auch beim Steuern eines Quantensystems ist die spezifische Abfolge der Operationen wichtig. Wenn der Autofahrer beispielsweise zuerst alle Lenkbewegungen vollzieht und danach alle Vor- und Rückwärtsbewegungen, dann führt dies kaum zu einem erfolgreichen Parkiervorgang. Ähnlich verhält es sich mit den künstlichen Atomen der ETH-Physiker, welche sie mit Mikrowellenpulsen steuern. «Wir erzielen verschiedene Endresultate, je nachdem in welcher Reihenfolge wir die einzelnen Pulse anwenden, obwohl die Pulse die gleiche Form, die gleiche Energie und die gleiche Länge haben. Dies lässt sich nur durch die verschiedenen Wege erklären, die das System durch den Hilbert-Raum nimmt», sagt Stefan Filipp.

Auf dem Weg zu einem Quantencomputer

«Wir haben es zum ersten Mal überhaupt geschafft, diese spezifische Art von Steuerung an einem isolierten Quantenobjekt durchzuführen und den Vorgang detailliert zu untersuchen», ergänzt Abdufarrukh Abdumalikov, ebenfalls Wissenschaftler in der Gruppe von Wallraff. Wesentlich zum Erfolg der ETH-Physiker beigetragen hat, dass die Wissenschaftler mit relativ kurzen Mikrowellenpulsen arbeiten. «Dadurch können wir die Operationen schnell durchführen, bevor Störungen den Quantenzustand unwiderruflich zerstören», sagt Abdumalikov.
Die Forscher erwarten, dass ihre Methode einen gangbaren Weg in Richtung eines praktischen Quantencomputers vorzeichnet. An der Entwicklung solcher Geräte, welche die Gesetze der Quantenmechanik zur Bewältigung von Rechenaufgaben nutzen, wird derzeit in der Physik intensiv geforscht. Denn die Quantenphysik eröffnet ein ganzes Spektrum an neuen Möglichkeiten zur Informationsverarbeitung. So erhofft man sich von Quantenrechnern, dass sie eines Tages helfen, Probleme zu lösen, die rechnerisch zu aufwendig sind, als dass sie ein konventioneller Computer jemals in nützlicher Zeit lösen könnte.

Abdumalikov AA, Fink JM, Juliusson K, Pechal M, Berger S, Wallraff A, Filipp S: Experimental Realization of Non-Abelian Non-Adiabatic Geometric Gates. Nature, 2013, doi: 10.1038/nature12010

Roman Klingler | idw
Weitere Informationen:
http://www.ethz.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie