Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Blick auf die Bausteine des Lebens

28.05.2009
Physiker der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben zum ersten Mal eine ultrakurzlebige Ausrichtung von Molekülen mit Hilfe von Elektronenpulsen sichtbar gemacht.

Der Feinbau des Lebens besteht aus einer unendlichen Vielfalt aus Molekülen. Das Verständnis dieser Varianz wird erst möglich, wenn man ihre einzelnen Strukturen kennt. Doch noch birgt die Architektur von Molekülen viele Geheimnisse.

Einen wichtigen Schritt auf dem Weg zur genaueren Erforschung das Aufbaus von Molekülen hat jetzt ein Team vom Laboratorium für Attosekundenphysik (LAP) um Dr. Ernst Fill unter der Leitung von Prof. Ferenc Krausz zurückgelegt.

Die Physiker verwendeten dafür eine Kombination aus kurzen Licht- und Elektronenpulsen. Damit konnten sie zum ersten Mal zeitaufgelöste Beugungsbilder von kurzzeitig ausgerichteten Molekülen aufzeichnen. Mit Hilfe von Femtosekunden-Laserpulsen richteten die Wissenschaftler Moleküle extrem kurzfristig aus. Die Ausrichtung wiesen die Forscher anschließend mittels Elektronenbeugung nach. Die Methode ist wegweisend für zukünftige Erforschung von Molekülen. Die Physiker berichten darüber im Fachmagazin "Physical Review Letters" (102,213001 (2009)). Zudem ist der Artikel von den Herausgebern besonders hervorgehoben worden ("Editors suggestion").

Als im Jahr 1927 experimentell bewiesen war, dass Elektronen eine Wellennatur besitzen, erlangten die negativ geladenen Teilchen schnell elementare Bedeutung für die Strukturanalyse von Festkörpern und Molekülen. Denn bei der Streuung von Elektronen an Molekülen in der Gasphase entstehen Beugungsbilder. Aus den Bildern werden Informationen über den Aufbau der Moleküle gewonnen, wie etwa über die Abstände der Atome untereinander. Theoretisch wurde bereits vorausgesagt, dass aus Beugungsbildern ausgerichteter Moleküle, zusätzlich zu den Atomabständen, auch Informationen über ihre dreidimensionale Struktur gewonnen werden kann.

Die Ausrichtung von Molekülen kann mit Laserpulsen bewerkstelligt werden. Verantwortlich für eine Orientierung sind die elektrischen und magnetischen Felder der Lichtpulse. Durch die extreme Kürze erlangen die Felder der Pulse eine enorme Intensität und damit Einfluss auf die Teilchen.

Beugungsbilder von zuvor durch Licht ausgerichteten einfachen Molekülen könnten den Weg hin zur Aufklärung dreidimensionaler Strukturen großer Moleküle erschließen. Diese Kombination ist nun erstmals Wissenschaftlern vom Laboratorium für Attosekundenphysik gelungen. Sie haben die lichtgesteuerte Ausrichtung einfach aufgebauter Moleküle (Diiodotetrafluoroethan) mittels zeitaufgelöster Elektronenbeugung sichtbar gemacht.

Für ihr Experiment verwendeten die Physiker die Laserpulse, um Moleküle richtiger Orientierung auszuwählen. Dazu spalteten die Quantenoptiker mit einem linear polarisierten Laserpuls einen Teil der Moleküle auf. Der Lichtpuls trennt vom Ausgangsmolekül ein Atom ab. Diese Reaktion verläuft vor allem bei Molekülen, die in der richtigen Orientierung bezüglich der Laserpolarisation liegen. Die Produkte dieser Aufspaltung sind also direkt nach dem Durchgang des Laserpulses ausgerichtet.

Den Vorgang beobachteten die Physiker mit Hilfe der Anrege-Abfrage-Technik. Hierbei wird die Verzögerung zwischen den zuerst auf die Probe auftreffenden, die Reaktion einleitenden Laserpulsen und den anschließend aufzeichnenden Elektronenpulsen variiert. Die Wissenschaftler beobachteten, wie sich die Moleküle reorientierten, wie also die erzeugte molekulare Ausrichtung nach der Anregung wieder verloren ging. Der anregende Laserpuls in dem Experiment war dabei etwa hundert Femtosekunden lang. Die darauf folgenden Elektronenpulse dauerten einige wenige Pikosekunden (eine Femtosekunde ist ein Millionstel einer Milliardstel Sekunde, eine Pikosekunde dauert tausend Mal länger).
Mit ihrem Experiment haben die Physiker um Dr. Ernst Fill und Prof. Ferenc Krausz zum ersten Mal die Möglichkeit aufgezeigt, dass Beugungsbilder von ausgerichteten Molekülen in der Gasphase erstellt werden können. Die Ergebnisse sind ein erster Schritt, um Molekülstrukturen künftig dreidimensional mit Elektronenbeugung darzustellen. Dazu wird in weiteren Schritten die zeitliche Auflösung verbessert, indem man die aufzeichnenden Elektronenpulse vom Picosekunden- in den Femtosekundenbereich verkürzt. Ähnlich zu sehr kurzen Verschlusszeiten in der konventionellen Fotografie wäre man dann in der Lage, schnelle Vorgänge im Mikrokosmos des Lebens sichtbar werden zu lassen.

Thorsten Naeser

Originalveröffentlichung:
Peter Reckenthaeler, Martin Centurion, Werner Fuß, Sergei A. Trushin, Ferenc Krausz, und Ernst E. Fill
"Time-Resolved Electron Diffraction from Selectively Aligned Molecules",
Physical Review Letters, published 27 May 2009
Weitere Informationen erhalten Sie von:
Dr. Ernst Fill
Ludwig-Maximilians-Universität, München
Laboratorium für Attosekundenphysik (LAP)
Am Coulombwall 1
85748 Garching, Germany
Tel.: (+ 49 89) 289 - 14110,
Email: ernst.fill@mpq.mpg.de
Peter Reckenthäler
Ludwig-Maximilians-Universität, München
Laboratorium für Attosekundenphysik (LAP)
Am Coulombwall 1
85748 Garching, Germany
Tel.: (+ 49 89) 289 14054,
Email: peter.reckenthaeler@mpq.mpg.de
Prof. Ferenc Krausz
Max-Planck-Institut für Quantenoptik, Garching
Ludwig-Maximilians-Universität, München
Laboratorium für Attosekundenphysik (LAP)
Tel: +49 89 32905-612
Fax: +49 89 32905-649
E-Mail: ferenc.krausz@mpq.mpg.de
http://www.attoworld.de
Olivia Meyer-Streng
Presse & Kommunikation
Max-Planck-Institut für Quantenoptik
Telefon: +49 - 89 / 32905 - 213
Fax: +49 - 89 / 32905 - 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | idw
Weitere Informationen:
http://www.mpq.mpg.de
http://www.attoworld.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften