Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Blick auf die Bausteine des Lebens

28.05.2009
Physiker der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben zum ersten Mal eine ultrakurzlebige Ausrichtung von Molekülen mit Hilfe von Elektronenpulsen sichtbar gemacht.

Der Feinbau des Lebens besteht aus einer unendlichen Vielfalt aus Molekülen. Das Verständnis dieser Varianz wird erst möglich, wenn man ihre einzelnen Strukturen kennt. Doch noch birgt die Architektur von Molekülen viele Geheimnisse.

Einen wichtigen Schritt auf dem Weg zur genaueren Erforschung das Aufbaus von Molekülen hat jetzt ein Team vom Laboratorium für Attosekundenphysik (LAP) um Dr. Ernst Fill unter der Leitung von Prof. Ferenc Krausz zurückgelegt.

Die Physiker verwendeten dafür eine Kombination aus kurzen Licht- und Elektronenpulsen. Damit konnten sie zum ersten Mal zeitaufgelöste Beugungsbilder von kurzzeitig ausgerichteten Molekülen aufzeichnen. Mit Hilfe von Femtosekunden-Laserpulsen richteten die Wissenschaftler Moleküle extrem kurzfristig aus. Die Ausrichtung wiesen die Forscher anschließend mittels Elektronenbeugung nach. Die Methode ist wegweisend für zukünftige Erforschung von Molekülen. Die Physiker berichten darüber im Fachmagazin "Physical Review Letters" (102,213001 (2009)). Zudem ist der Artikel von den Herausgebern besonders hervorgehoben worden ("Editors suggestion").

Als im Jahr 1927 experimentell bewiesen war, dass Elektronen eine Wellennatur besitzen, erlangten die negativ geladenen Teilchen schnell elementare Bedeutung für die Strukturanalyse von Festkörpern und Molekülen. Denn bei der Streuung von Elektronen an Molekülen in der Gasphase entstehen Beugungsbilder. Aus den Bildern werden Informationen über den Aufbau der Moleküle gewonnen, wie etwa über die Abstände der Atome untereinander. Theoretisch wurde bereits vorausgesagt, dass aus Beugungsbildern ausgerichteter Moleküle, zusätzlich zu den Atomabständen, auch Informationen über ihre dreidimensionale Struktur gewonnen werden kann.

Die Ausrichtung von Molekülen kann mit Laserpulsen bewerkstelligt werden. Verantwortlich für eine Orientierung sind die elektrischen und magnetischen Felder der Lichtpulse. Durch die extreme Kürze erlangen die Felder der Pulse eine enorme Intensität und damit Einfluss auf die Teilchen.

Beugungsbilder von zuvor durch Licht ausgerichteten einfachen Molekülen könnten den Weg hin zur Aufklärung dreidimensionaler Strukturen großer Moleküle erschließen. Diese Kombination ist nun erstmals Wissenschaftlern vom Laboratorium für Attosekundenphysik gelungen. Sie haben die lichtgesteuerte Ausrichtung einfach aufgebauter Moleküle (Diiodotetrafluoroethan) mittels zeitaufgelöster Elektronenbeugung sichtbar gemacht.

Für ihr Experiment verwendeten die Physiker die Laserpulse, um Moleküle richtiger Orientierung auszuwählen. Dazu spalteten die Quantenoptiker mit einem linear polarisierten Laserpuls einen Teil der Moleküle auf. Der Lichtpuls trennt vom Ausgangsmolekül ein Atom ab. Diese Reaktion verläuft vor allem bei Molekülen, die in der richtigen Orientierung bezüglich der Laserpolarisation liegen. Die Produkte dieser Aufspaltung sind also direkt nach dem Durchgang des Laserpulses ausgerichtet.

Den Vorgang beobachteten die Physiker mit Hilfe der Anrege-Abfrage-Technik. Hierbei wird die Verzögerung zwischen den zuerst auf die Probe auftreffenden, die Reaktion einleitenden Laserpulsen und den anschließend aufzeichnenden Elektronenpulsen variiert. Die Wissenschaftler beobachteten, wie sich die Moleküle reorientierten, wie also die erzeugte molekulare Ausrichtung nach der Anregung wieder verloren ging. Der anregende Laserpuls in dem Experiment war dabei etwa hundert Femtosekunden lang. Die darauf folgenden Elektronenpulse dauerten einige wenige Pikosekunden (eine Femtosekunde ist ein Millionstel einer Milliardstel Sekunde, eine Pikosekunde dauert tausend Mal länger).
Mit ihrem Experiment haben die Physiker um Dr. Ernst Fill und Prof. Ferenc Krausz zum ersten Mal die Möglichkeit aufgezeigt, dass Beugungsbilder von ausgerichteten Molekülen in der Gasphase erstellt werden können. Die Ergebnisse sind ein erster Schritt, um Molekülstrukturen künftig dreidimensional mit Elektronenbeugung darzustellen. Dazu wird in weiteren Schritten die zeitliche Auflösung verbessert, indem man die aufzeichnenden Elektronenpulse vom Picosekunden- in den Femtosekundenbereich verkürzt. Ähnlich zu sehr kurzen Verschlusszeiten in der konventionellen Fotografie wäre man dann in der Lage, schnelle Vorgänge im Mikrokosmos des Lebens sichtbar werden zu lassen.

Thorsten Naeser

Originalveröffentlichung:
Peter Reckenthaeler, Martin Centurion, Werner Fuß, Sergei A. Trushin, Ferenc Krausz, und Ernst E. Fill
"Time-Resolved Electron Diffraction from Selectively Aligned Molecules",
Physical Review Letters, published 27 May 2009
Weitere Informationen erhalten Sie von:
Dr. Ernst Fill
Ludwig-Maximilians-Universität, München
Laboratorium für Attosekundenphysik (LAP)
Am Coulombwall 1
85748 Garching, Germany
Tel.: (+ 49 89) 289 - 14110,
Email: ernst.fill@mpq.mpg.de
Peter Reckenthäler
Ludwig-Maximilians-Universität, München
Laboratorium für Attosekundenphysik (LAP)
Am Coulombwall 1
85748 Garching, Germany
Tel.: (+ 49 89) 289 14054,
Email: peter.reckenthaeler@mpq.mpg.de
Prof. Ferenc Krausz
Max-Planck-Institut für Quantenoptik, Garching
Ludwig-Maximilians-Universität, München
Laboratorium für Attosekundenphysik (LAP)
Tel: +49 89 32905-612
Fax: +49 89 32905-649
E-Mail: ferenc.krausz@mpq.mpg.de
http://www.attoworld.de
Olivia Meyer-Streng
Presse & Kommunikation
Max-Planck-Institut für Quantenoptik
Telefon: +49 - 89 / 32905 - 213
Fax: +49 - 89 / 32905 - 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | idw
Weitere Informationen:
http://www.mpq.mpg.de
http://www.attoworld.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie