Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Ansatz für Jagd nach kosmischem Teilchenbeschleuniger

15.02.2013
Astronomen um Sladjana Nikoliæ vom Max-Planck-Institut für Astronomie in Heidelberg haben Teilbereiche des Supernovaüberrests SN 1006 mit nie erreichter Genauigkeit beobachtet.

Solche Überreste gelten als Quellen für einen Teil der kosmischen Teilchenstrahlung, welche die Erde trifft. Die Beobachtungen geben erstmals Hinweise auf mögliche Vorläuferteilchen für die kosmische Teilchenstrahlung solcher Objekte. Die neuartige Beobachtungstechnik, die zum Einsatz kam, verspricht eine Vielzahl weiterer Erkenntnisse dazu, wie Supernovaüberreste kosmische Teilchen beschleunigen. Die Ergebnisse werden am 14. Februar 2013 in der Fachzeitschrift Science veröffentlicht.


Kombinationsbild des Supernovaüberrests SN 1006 bei verschiedenen Wellenlängen: Radiowellen (rot), Röntgen (blau) und sichtbares Licht (gelb, orange, hellblau). Der von Nikolić und Kollegen näher untersuchte Abschnitt der Schockfront befindet sich in dem eingezeichneten grünen Rechteck.
Bild: Röntgen: NASA/CXC/Rutgers/G.Cassam-Chenaï, J.Hughes et al.; Radio: NRAO/AUI/NSF/GBT/VLA/Dyer, Maddalena & Cornwell; optisch: Middlebury College/F.Winkler, NOAO/AURA/NSF/CTIO Schmidt & DSS

Fast genau hundert Jahre ist es her, dass Victor Hess die vorwiegend aus Protonen bestehende kosmische Teilchenstrahlung entdeckte, die aus den Tiefen des Weltraums auf die Erde trifft. Die energiereichsten Teilchen dabei stammen von außerhalb unseres Sonnensystems, und für einige davon wiederum werden als Quelle sogenannte Supernovaüberreste angenommen.

Supernovae sind gigantische Sternexplosionen am Ende des Lebens bestimmter Sterne. Dabei werden große Teile der Sternatmosphäre oder gleich die gesamte Sternmaterie nach außen geschleudert und bilden einen sogenannten Supernovaüberrest, der sich im Laufe der Zeit immer weiter ausdehnt. Wo das herausgeschleuderte Material auf die umgebende interstellare Materie trifft, bilden sich Schockwellen aus – Regionen, in denen sich Dichte und Temperatur abrupt ändern, ähnlich den Schockwellen des Überschnallknalls, wenn ein Flugzeug die Schallmauer durchbricht.

Die expandierenden, hochenergetischen Schockwellen sind naheliegende Kandidaten für kosmische Teilchenbeschleuniger, die hochenergetische Teilchenstrahlung produzieren. Jetzt haben Forscher um die serbische Astronomin Sladjana Nikoliæ (Max-Planck-Institut für Astronomie) erstmals Hinweise darauf gefunden, dass in den Schockregionen in der Tat Protonen beschleunigt werden. Bei diesen Protonen handelt es sich noch nicht um die kosmische Teilchenstrahlung selbst, sondern um Vorläuferteilchen (»seed particles«), die anschließend durch Wechselwirkung mit der Schockfront auf die erforderlichen hohen Energien beschleunigt werden und als Teilchenstrahlung hinaus in den Raum fliegen können.

Nikoliæ erklärt: »Dies ist das erste Mal, das wir die physikalischen Prozesse in und um die Schockregion genauer untersuchen konnten. Wir haben dabei Hinweise auf die Existenz einer erwärmten Region direkt vor der Schockwelle gefunden, wie sie den gängigen Modellen nach notwendig ist, damit überhaupt kosmische Teilchenstrahlung entstehen kann. Außerdem wurde diese Region offenbar auf genau jene Weise erwärmt, wie man es erwarten würde, wenn dort Protonen existieren, welche die Energie aus direkt hinter der Schockfront gelegenen Regionen in die Bereiche direkt vor dem Schock transportieren.«

Die Untersuchung basiert auf Analysen, die Nikoliæ als Teil ihrer Doktorarbeit am Max-Planck-Institut für Astronomie und der Universität Heidelberg durchführte. Entscheidend für die neuen Ergebnisse war, dass Nikoliæ und ihre Kollegen eine neuartige Beobachtungstechnik namens Integralfeldspektroskopie (integral field spectroscopy) einsetzten. Diese Technik erlaubt es, die Zusammensetzung des Lichts für eine Vielzahl verschiedener Bildpunkte im Bildfeld des Teleskops gleichzeitig zu bestimmen. Sie wurde hier zum ersten Mal auf einen Supernovaüberrest angewandt.

Nikoliæ und ihre Kollegen nutzten den Spektrografen VIMOS am Very Large Telescope der Europäischen Südsternwarte in Chile, um für mehr als 100 Punkte in einem kleinen Teilbereich der Schockfront der Supernova SN1006 gleichzeitig die Lichtzusammensetzung (»Spektrum«) zu bestimmen. Die rund anderthalbjährige Analyse der Daten ergab detaillierte Informationen insbesondere über die Temperaturen vor und hinter der Schockfront.

Kevin Heng von der Universität Bern, Co-Betreuer von Nikoliæs Doktorarbeit, sagt: »Wir sind besonders stolz darauf, dass wir die Integralfeldspektroskopie in eher unorthodoxer Weise eingesetzt haben – üblicherweise beobachtet man damit weit entfernte Galaxien. Die Genauigkeit, die wir dabei erreicht haben, stellt alle vorangehenden Studien in den Schatten.«

Wichtig sind die jetzt veröffentlichten Ergebnisse auch als Wegbereiter für zukünftige Untersuchungen. Nikoliæ erklärt: »Das hier war ein Pilotprojekt. Das Licht, das wir von dem Supernovaüberrest auffangen, ist ungleich schwächer als bei den üblichen Zielobjekten für solche Instrumente. Jetzt, wo wir wissen, was machbar ist, sind eine Vielzahl interessanter Nachfolgeprojekte in den Bereich des Möglichen gerückt.« Glenn van de Ven vom Max-Planck-Institut für Astronomie, Nikoliæs Doktorvater, fügt hinzu: »Diese neuartige Beobachtungstechnik könnte sich als Schlüssel erweisen, um herauszufinden, wie Supernovaüberreste kosmische Teilchenstrahlung erzeugen.«

Kontakt

Sladjana Nikoliæ (Erstautorin)
Max-Planck-Institut für Astronomie
Heidelberg
Telefon: (+49|0) 6221 – 528 438
E-Mail: nikolic@mpia.de
Glenn van de Ven (Koautor)
Max-Planck-Institut für Astronomie
Heidelberg
Telefon: (+49|0) 6221 – 528 275
E-Mmail: glenn@mpia.de
Markus Pössel (Öffentlichkeitsarbeit)
Max-Planck-Institut für Astronomie
Heidelberg
Telefon: (+49|0) 6221 – 528 261
E-Mail: pr@mpia.de

Dr. Markus Pössel | Max-Planck-Institut
Weitere Informationen:
http://www.mpia.de
http://www.mpia.de/Public/menu_q2.php?Aktuelles/PR/2013/PR130214/PR_130214_de.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie