Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Im neuen Quantencomputer funkt’s!

24.02.2011
Atomare Antennen übermitteln Quanteninformation auf Mikrochip

Eine grundlegend neue Architektur für den Quantencomputer schlagen Innsbrucker Physiker um Rainer Blatt in der Fachzeitschrift Nature vor. Sie haben im Experiment erstmals die Funktion von Quantenantennen demonstriert. Diese machen es möglich, Quanteninformation zwischen einzelnen Speicherzellen auf einem Computerchip auszutauschen. Damit wird der Bau von handlicheren Quantencomputern denkbar.


Quantenantennen machen es möglich, Quanteninformation zwischen einzelnen Speicherzellen auf einem Computerchip auszutauschen. Grafik: Harald Ritsch

Vor sechs Jahren wurde an der Universität Innsbruck das erste Quantenbyte – ein Quantencomputer mit acht Recheneinheiten – realisiert. Ein Rekord, der bis heute hält. „Um aber mit einem Quantencomputer richtig rechnen zu können, benötigen wir wesentlich mehr Quantenbits“, sagt Prof. Rainer Blatt, der dieses erste Quantenbyte mit einem Team am Institut für Experimentalphysik in einer elektromagnetischen Ionenfalle hergestellt hat. „In diesen Fallen können wir nicht beliebig viele Ionen aneinanderreihen und gleichzeitig kontrollieren.“ Die Wissenschaftler sind deshalb dazu übergegangen, den Quantencomputer als System von vielen kleinen Registern zu konzipieren. Diese müssen miteinander verbunden werden. Dafür haben die Innsbrucker Quantenphysiker nun einen revolutionären Ansatz entwickelt, der auf einer Idee der Theoretiker Ignacio Cirac und Peter Zoller basiert.

Im Labor konnten die Physiker zwei Gruppen von Ionen über eine Entfernung von rund 50 Mikrometern elektromagnetisch koppeln. Dabei dient die Bewegung der Teilchen als Antenne. „Die Teilchen schwingen wie die Elektronen in den Stäbe einer Fernsehantenne und erzeugen so ein elektromagnetisches Feld“, erklärt Blatt. „Wenn die Antennen aufeinander abgestimmt sind, nimmt der Empfänger das Signal des Senders auf und es entsteht eine Kopplung.“ Der dabei stattfindende Energieaustausch könnte die Grundlage für elementare Rechenoperationen eines Quantencomputers sein.

Antennen verstärken Übertragung
„Wir haben diese Idee zunächst in sehr einfacher Weise umgesetzt“, erzählt Rainer Blatt. In einer miniaturisierten Ionenfalle wird ein wellenförmiges Potential eingerichtet, in dem die Calcium-Ionen gefangen sind. Die beiden Wellentäler liegen 54 Mikrometer auseinander. „Durch das Anlegen einer Spannung an den Elektroden der Ionenfalle können wir die Schwingungsfrequenzen der Ionen aneinander anpassen“, sagt Blatt. „Dabei kommt es zur Kopplung und zum Energieaustausch, über den wir Quanteninformation übertragen können.“ Noch nie zuvor konnte eine direkte Kopplung von zwei mechanischen Schwingungen auf Quantenebene demonstriert werden. Die Wissenschaftler zeigen in dem Experiment darüber hinaus, dass die Kopplung umso stärker ist, je mehr Ionen in den beiden Gruppen vorhanden sind. „Die zusätzlichen Ionen wirken wie Antennen und erhöhen die Reichweite und Geschwindigkeit der Übertragung“, zeigt sich Rainer Blatt von dem neuen Konzept begeistert. Es stellt einen vielversprechenden Ansatz für den Bau eines voll funktionsfähigen Quantencomputers dar. „Diese neue Technologie bietet uns die Möglichkeit zur Verschränkung mittels Kommunikation. Gleichzeitig können wir jede Speicherzelle einzeln ansprechen“, so Rainer Blatt. Der neue Quantencomputer könnte auf einem Chip mit vielen Mikrofallen basieren, in denen Ionen mittels elektromagnetischer Kopplung miteinander kommunizieren. Dies wäre ein weiterer wichtiger Schritt auf dem Weg zu alltagstauglichen Quantentechnologien für die Informationsverarbeitung.

Unterstützt wurden die Tiroler Quantenforscher vom Wissenschaftsfonds FWF, der Europäischen Union, dem Europäischen Forschungsrat ERC und der Tiroler Industrie.

Publikation: Trapped-ion antennae for the transmission of quantum information. Maximilian Harlander, Regina Lechner, Michael Brownnutt, Rainer Blatt, Wolfgang Hänsel. Nature Advanced Online Publication 23. Februar 2011

DOI: 10.1038/nature09800

Rückfragehinweis:

Univ.-Prof. Dr. Rainer Blatt
Institut für Experimentalphysik
Universität Innsbruck
Tel.: +43 512 507-6350
E-Mail: rainer.blatt@uibk.ac.at
Dr. Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Tel.: +43 650 5777122
E-Mail: christian.flatz@uibk.ac.at
Weitere Informationen:
http://dx.doi.org/10.1038/nature09800 - Trapped-ion antennae for the transmission of quantum information. Maximilian Harlander, Regina Lechner, Michael Brownnutt, Rainer Blatt, Wolfgang Hänsel. Nature Advanced Online Publication 23. Februar 2011

Dr. Christian Flatz | Universität Innsbruck
Weitere Informationen:
http://www.quantumoptics.at
http://www.uibk.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

200 Weltneuheiten beim Innovationstag Mittelstand in Berlin

26.04.2017 | Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung

26.04.2017 | Biowissenschaften Chemie

Naturkatastrophen kosten Winzer jährlich Milliarden

26.04.2017 | Interdisziplinäre Forschung

Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt

26.04.2017 | Biowissenschaften Chemie