Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Technik für energieeffiziente Datenspeicher

10.01.2014
Wie die Zeitschrift „Physical Review Letters“ in ihrer neuesten Ausgabe berichtet, ist es Physikern der Universität Hamburg erstmals gelungen, die Magnetisierung von einzelnen Nano-Speicherzellen mit einem elektrischen Feld zu schalten. In der Zukunft könnte die neue Technik dazu verwendet werden, extrem schnelle Speichermedien mit geringem Energieverbrauch herzustellen.

Viele digitale Geräte, die wir aus unserem Alltag kennen, speichern Informationen auf Festplatten oder MRAMs in magnetischen Zellen. Deren Magnetisierung kann dabei zwei mögliche Orientierungen aufweisen, die den logischen Zuständen „0“ oder „1“ zugeordnet werden.


Veranschaulichung des Schaltens der Magnetisierung
Arbeitsgruppe Prof. R. Wiesendanger, Universität Hamburg

Üblicherweise werden magnetische Felder oder große Ströme benutzt, um Daten auf die Speicherzellen zu schreiben. Dies hat den Nachteil, dass die Speicherzellen sowie der Stromverbrauch solcher Medien relativ groß sind.

Wie die Forschergruppe um Prof. Roland Wiesendanger nun zeigte, können einzelne magnetische Speicherzellen durch das Anlegen eines lokalen elektrischen Feldes gezielt so verändert werden, dass je nach Wunsch entweder das Schreiben oder das Speichern von Informationen erleichtert wird.

Hierzu nutzten die Physiker ein selbstentwickeltes Rastertunnelmikroskop, in dem mit einer feinen Messspitze einzelne Speicherzellen magnetisch untersucht werden können. Die verwendeten Zellen bestehen dabei lediglich aus ca. 100 Eisenatomen. Eine zwischen Messspitze und Zelle angelegte Spannung erzeugt dabei ein lokales elektrisches Feld. Die Experimente zeigten, dass sich die Magnetisierung der Zelle je nach Orientierung des elektrischen Feldes leichter bzw. schwerer schalten lässt.

In zukünftigen Datenspeichern könnte daher ein kurzzeitig angelegtes elektrisches Feld eine entscheidende Rolle spielen: Beim Schreiben von Daten erleichtert das Feld die Magnetisierungsumkehr. Nach dem Schreibvorgang wird das Feld wieder ausgeschaltet und somit die Speicherzelle gegen eine ungewollte Magnetisierungsumkehr stabilisiert.

„Da zum Anlegen des elektrischen Feldes nur ein extrem kleiner Strom benötigt wird, kann der Energieverbrauch eines solchen Speichers minimiert werden. Insbesondere im mobilen Einsatz, etwa in Smartphones oder Laptops, liegt daher ein großes Potential der neuen Technik“, sagt Physiker Andreas Sonntag, einer der an der Studie beteiligten Experimentatoren.

Die Abbildung veranschaulicht des Schaltens der Magnetisierung: Das elektrische Feld (orange) destabilisiert eine einzelne magnetische Speicherzelle und verursacht so eine Magnetisierungsumkehr (links). Die Zelle behält diese Magnetisierung bei, wenn das Feld ausgeschaltet ist (rechts).

Original Veröffentlichung:
Electric-Field-Induced Magnetic Anisotropy in a Nanomagnet Investigated on the Atomic Scale
A. Sonntag, J. Hermenau, A. Schlenhoff, J. Friedlein, S. Krause, and R. Wiesendanger
Phys. Rev. Lett. 112, 017204 (2014).
DOI: 10.1103/PhysRevLett.112.017204
Weitere Informationen:
Dipl.-Chem. Heiko Fuchs
Sonderforschungsbereich 668
Institut für Angewandte Physik
Universität Hamburg
Jungiusstr. 11a, 20355 Hamburg
Tel.: (0 40) 4 28 38 - 69 59
Fax: (0 40) 4 28 38 - 24 09
E-Mail: hfuchs@physnet.uni-hamburg.de

Heiko Fuchs | idw
Weitere Informationen:
http://www.sfb668.de
http://www.nanoscience.de
http://www.uni-hamburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Stabile Quantenbits
08.12.2017 | Universität Konstanz

nachricht Neue Erscheinungsform magnetischer Monopole entdeckt
08.12.2017 | Institute of Science and Technology Austria

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Papstar entscheidet sich für tisoware

08.12.2017 | Unternehmensmeldung

Natürliches Radongas – zweithäufigste Ursache für Lungenkrebs

08.12.2017 | Unternehmensmeldung

„Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz

08.12.2017 | Biowissenschaften Chemie