Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Physik mit COSY-Beschleuniger

22.01.2015

Vorbereitungen für die Suche nach der verschwundenen Antimaterie

Über 20 Jahre lang haben Wissenschaftler an COSY Vorgängen im Innern von Atomkernen nachgespürt. Ab 2015 rücken nun neue Fragen in den Mittelpunkt. Die Experimente zur Hadronenphysik sollen künftig im dreimal größeren Speicherring HESR am Beschleunigerkomplex FAIR in Darmstadt fortgesetzt werden.


Prof. Mei Bai neben dem 2 MeV-Elektronenkühlsystem am COSY Beschleuniger, das zunächst auch am Hochenergiespeicherring HESR an FAIR in Darmstadt zum Einsatz kommen soll. Mei Bai ist seit Dezember 2014 Direktorin am Institut für Kernphysik und leitet den Bereich Kernphysikalische Großgeräte (IKP-4).

Copyright: Forschungszentrum Jülich


Elektrische Dipolmomente entstehen, wenn die positiven und negativen Ladungsträger unterschiedliche Schwerpunkte haben.

Copyright: Forschungszentrum Jülich

An COSY beginnen dagegen Vorbereitungen zur Vermessung fundamentaler Symmetrieverletzungen. Die neuen Projekte sollen helfen zu verstehen, wo die ungeheuren Mengen von Antimaterie nach dem Urknall im Universum geblieben sind. Darüber hinaus wird der Jülicher Beschleuniger verstärkt für die Beschleuniger- und Detektorentwicklung eingesetzt.

„Seit seiner Einweihung im Jahr 1993 hat sich COSY als sehr effizientes Werkzeug erwiesen, um die Natur der starken Wechselwirkung zu erforschen, die sich in den Eigenschaften der Hadronen zeigt“, erklärt Prof. Hans Ströher, Direktor am Institut für Kernphysik. Zu den Hadronen zählen etwa Protonen und Neutronen, die Bausteine der Atomkerne.

Über die gesamte Betriebsdauer sind über 500 Wochen Strahlzeit für insgesamt mehr als 200 Experimente zusammengekommen. Als besonderes Highlight konnten Wissenschaftler am Jülicher Kühler Synchrotron (engl. Cooler Synchrotron, COSY) kürzlich ein erstes exotisches Teilchen nachweisen, das aus sechs Quarks besteht. Lange Zeit waren nur Bindungszustände bekannt, die aus zwei oder drei dieser Elementarteilchen aufgebaut sind.

Einem kosmischen Rätsel auf der Spur

Ab 2015 wendet sich die Forschung an dem 183 Meter langen Beschleunigerring nun der Überprüfung fundamentaler Symmetrien zu. Die Neuausrichtung geht mit der Umstrukturierung des Forschungsbereichs „Struktur der Materie“ der Helmholtz-Gemeinschaft einher, der das Forschungszentrum Jülich als Mitglied angehört. „Für die Hadronenphysik ergeben sich außerdem neue Möglichkeiten am Beschleunigerkomplex FAIR, an dessen Aufbau sich Jülicher Wissenschaftler maßgeblich beteiligen“, erläutert Hans Ströher, gleichzeitig Leiter des Institutsbereichs Experimentelle Hadronendynamik, die Entscheidung.

Die Vorhaben an COSY sollen dazu beitragen, das große Rätsel unserer Existenz zu klären. Nach dem Urknall, so die gängige Annahme, sollte genau so viel Materie wie Antimaterie entstanden sein. Die beiden Formen löschen sich gegenseitig aus. Es dürfte uns eigentlich also gar nicht geben. Doch das ist nicht der Fall, die Auslöschung verlief unvollständig – und die Verletzung fundamentaler Symmetrien könnte erklären warum.

JEDI bringt Licht ins Dunkle

Mit dem Experiment JEDI (Jülich Electric Dipole Investigations) will eine internationale Forschergruppe prüfen, ob das Proton ein elektrisches Dipolmoment besitzt. Es entsteht, wenn die Schwerpunkte elektrisch positiver und negativer Ladungsträger im Proton auseinander liegen. Der zu erwartende Effekt ist fast unvorstellbar klein. Wäre das Proton so groß wie die Erde, so wäre die Trennung der beiden Ladungszentren kleiner als der Durchmesser eines menschlichen Haars.

Bei der Messung gilt es, die Vielzahl möglicher Störeffekte zu berücksichtigen: etwa die Erdanziehung und das Erdmagnetfeld, vor dem die Anlage entsprechend abgeschirmt werden muss. In Kooperation mit der RWTH Aachen führen die Wissenschaftler im Rahmen der Jülich Aachen Research Allianz (JARA-FAME) an COSY verschiedene Vorstudien durch. Langfristig zielen die Versuche aber auf den Bau eines neuartigen Speicherrings ab, in dem zwei gegenläufige Protonenstrahlen aneinander vorbeilaufen können.

Neue Werkzeuge für neue Aufgaben

Ein Großteil der Strahlzeit an COSY wird in den nächsten Jahren für die Entwicklung der Geräte und Messverfahren reserviert, die für die geplanten Experimente benötigt werden. Geleitet werden die Arbeiten von Prof. Mei Bai. Im Dezember 2014 ist sie vom Relativistic Heavy Ion Collider (RHIC) am Brookhaven National Laboratory, USA, ans Forschungszentrum Jülich gewechselt.

„Die wissenschaftlichen Herausforderungen von Präzisionsmessungen mit polarisierten Protonenstrahlen interessieren mich besonders.“ so die neue Direktorin am Institut für Kernphysik.

Die Beschleuniger- und Detektor-Entwicklung wird insbesondere auch Experimenten mit Antiprotonen am Beschleunigerkomplex FAIR in Darmstadt zugutekommen. Jülicher Wissenschaftler leiten dort den Aufbau des 575 Meter langen Beschleunigerrings HESR und sind an dem Detektorsystem PANDA beteiligt. Mit einer – verglichen mit COSY fünfmal höheren - Strahlenergie können die Forscher in dieser Anlage auch schwerere Klassen von Quark-Bindungszuständen analysieren und nach neuen exotischen Zuständen fahnden.

Besonders interessieren sie sich für die Existenz sogenannter Glueballs, die nicht wie üblich aus Quarks, sondern ausschließlich aus Gluonen bestehen. Gluonen sind die Austauschteilchen der starken Wechselwirkung, die zwischen den Quarks, etwa in einem Proton, ausgetauscht werden. Reine Gluonenbälle wurden bereits theoretisch vorhergesagt, bisher aber noch nicht experimentell nachgewiesen.

Weitere Informationen:

Forschung am Institut für Kernphysik

Ansprechpartner:

Prof. Hans Ströher, Direktor am Institut für Kernphysik, Leiter des Bereichs Experimentelle Hadronendynamik (IKP-2)
Tel. 02461 61-4408
h.stroeher@fz-juelich.de

Prof. Mei Bai, Direktorin am Institut für Kernphysik, Leiterin des Bereichs Kernphysikalische Großgeräte (IKP-4)
Tel. 02461 61-4157
m.bai@fz-juelich.de

Pressekontakt:

Tobias Schlößer, Unternehmenskommunikation
Tel. 02461 61-4771
t.schloesser@fz-juelich.de

Tobias Schlößer | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2015/15-01-22IKP_COSY.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

nachricht Innovative High Power LED Light Engine für den UV Bereich
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie