Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Physik mit COSY-Beschleuniger

22.01.2015

Vorbereitungen für die Suche nach der verschwundenen Antimaterie

Über 20 Jahre lang haben Wissenschaftler an COSY Vorgängen im Innern von Atomkernen nachgespürt. Ab 2015 rücken nun neue Fragen in den Mittelpunkt. Die Experimente zur Hadronenphysik sollen künftig im dreimal größeren Speicherring HESR am Beschleunigerkomplex FAIR in Darmstadt fortgesetzt werden.


Prof. Mei Bai neben dem 2 MeV-Elektronenkühlsystem am COSY Beschleuniger, das zunächst auch am Hochenergiespeicherring HESR an FAIR in Darmstadt zum Einsatz kommen soll. Mei Bai ist seit Dezember 2014 Direktorin am Institut für Kernphysik und leitet den Bereich Kernphysikalische Großgeräte (IKP-4).

Copyright: Forschungszentrum Jülich


Elektrische Dipolmomente entstehen, wenn die positiven und negativen Ladungsträger unterschiedliche Schwerpunkte haben.

Copyright: Forschungszentrum Jülich

An COSY beginnen dagegen Vorbereitungen zur Vermessung fundamentaler Symmetrieverletzungen. Die neuen Projekte sollen helfen zu verstehen, wo die ungeheuren Mengen von Antimaterie nach dem Urknall im Universum geblieben sind. Darüber hinaus wird der Jülicher Beschleuniger verstärkt für die Beschleuniger- und Detektorentwicklung eingesetzt.

„Seit seiner Einweihung im Jahr 1993 hat sich COSY als sehr effizientes Werkzeug erwiesen, um die Natur der starken Wechselwirkung zu erforschen, die sich in den Eigenschaften der Hadronen zeigt“, erklärt Prof. Hans Ströher, Direktor am Institut für Kernphysik. Zu den Hadronen zählen etwa Protonen und Neutronen, die Bausteine der Atomkerne.

Über die gesamte Betriebsdauer sind über 500 Wochen Strahlzeit für insgesamt mehr als 200 Experimente zusammengekommen. Als besonderes Highlight konnten Wissenschaftler am Jülicher Kühler Synchrotron (engl. Cooler Synchrotron, COSY) kürzlich ein erstes exotisches Teilchen nachweisen, das aus sechs Quarks besteht. Lange Zeit waren nur Bindungszustände bekannt, die aus zwei oder drei dieser Elementarteilchen aufgebaut sind.

Einem kosmischen Rätsel auf der Spur

Ab 2015 wendet sich die Forschung an dem 183 Meter langen Beschleunigerring nun der Überprüfung fundamentaler Symmetrien zu. Die Neuausrichtung geht mit der Umstrukturierung des Forschungsbereichs „Struktur der Materie“ der Helmholtz-Gemeinschaft einher, der das Forschungszentrum Jülich als Mitglied angehört. „Für die Hadronenphysik ergeben sich außerdem neue Möglichkeiten am Beschleunigerkomplex FAIR, an dessen Aufbau sich Jülicher Wissenschaftler maßgeblich beteiligen“, erläutert Hans Ströher, gleichzeitig Leiter des Institutsbereichs Experimentelle Hadronendynamik, die Entscheidung.

Die Vorhaben an COSY sollen dazu beitragen, das große Rätsel unserer Existenz zu klären. Nach dem Urknall, so die gängige Annahme, sollte genau so viel Materie wie Antimaterie entstanden sein. Die beiden Formen löschen sich gegenseitig aus. Es dürfte uns eigentlich also gar nicht geben. Doch das ist nicht der Fall, die Auslöschung verlief unvollständig – und die Verletzung fundamentaler Symmetrien könnte erklären warum.

JEDI bringt Licht ins Dunkle

Mit dem Experiment JEDI (Jülich Electric Dipole Investigations) will eine internationale Forschergruppe prüfen, ob das Proton ein elektrisches Dipolmoment besitzt. Es entsteht, wenn die Schwerpunkte elektrisch positiver und negativer Ladungsträger im Proton auseinander liegen. Der zu erwartende Effekt ist fast unvorstellbar klein. Wäre das Proton so groß wie die Erde, so wäre die Trennung der beiden Ladungszentren kleiner als der Durchmesser eines menschlichen Haars.

Bei der Messung gilt es, die Vielzahl möglicher Störeffekte zu berücksichtigen: etwa die Erdanziehung und das Erdmagnetfeld, vor dem die Anlage entsprechend abgeschirmt werden muss. In Kooperation mit der RWTH Aachen führen die Wissenschaftler im Rahmen der Jülich Aachen Research Allianz (JARA-FAME) an COSY verschiedene Vorstudien durch. Langfristig zielen die Versuche aber auf den Bau eines neuartigen Speicherrings ab, in dem zwei gegenläufige Protonenstrahlen aneinander vorbeilaufen können.

Neue Werkzeuge für neue Aufgaben

Ein Großteil der Strahlzeit an COSY wird in den nächsten Jahren für die Entwicklung der Geräte und Messverfahren reserviert, die für die geplanten Experimente benötigt werden. Geleitet werden die Arbeiten von Prof. Mei Bai. Im Dezember 2014 ist sie vom Relativistic Heavy Ion Collider (RHIC) am Brookhaven National Laboratory, USA, ans Forschungszentrum Jülich gewechselt.

„Die wissenschaftlichen Herausforderungen von Präzisionsmessungen mit polarisierten Protonenstrahlen interessieren mich besonders.“ so die neue Direktorin am Institut für Kernphysik.

Die Beschleuniger- und Detektor-Entwicklung wird insbesondere auch Experimenten mit Antiprotonen am Beschleunigerkomplex FAIR in Darmstadt zugutekommen. Jülicher Wissenschaftler leiten dort den Aufbau des 575 Meter langen Beschleunigerrings HESR und sind an dem Detektorsystem PANDA beteiligt. Mit einer – verglichen mit COSY fünfmal höheren - Strahlenergie können die Forscher in dieser Anlage auch schwerere Klassen von Quark-Bindungszuständen analysieren und nach neuen exotischen Zuständen fahnden.

Besonders interessieren sie sich für die Existenz sogenannter Glueballs, die nicht wie üblich aus Quarks, sondern ausschließlich aus Gluonen bestehen. Gluonen sind die Austauschteilchen der starken Wechselwirkung, die zwischen den Quarks, etwa in einem Proton, ausgetauscht werden. Reine Gluonenbälle wurden bereits theoretisch vorhergesagt, bisher aber noch nicht experimentell nachgewiesen.

Weitere Informationen:

Forschung am Institut für Kernphysik

Ansprechpartner:

Prof. Hans Ströher, Direktor am Institut für Kernphysik, Leiter des Bereichs Experimentelle Hadronendynamik (IKP-2)
Tel. 02461 61-4408
h.stroeher@fz-juelich.de

Prof. Mei Bai, Direktorin am Institut für Kernphysik, Leiterin des Bereichs Kernphysikalische Großgeräte (IKP-4)
Tel. 02461 61-4157
m.bai@fz-juelich.de

Pressekontakt:

Tobias Schlößer, Unternehmenskommunikation
Tel. 02461 61-4771
t.schloesser@fz-juelich.de

Tobias Schlößer | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2015/15-01-22IKP_COSY.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt
22.05.2017 | Universität Basel

nachricht Neuer Ionisationsweg in molekularem Wasserstoff identifiziert
22.05.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: XENON1T: Das empfindlichste „Auge“ für Dunkle Materie

Gemeinsame Meldung des MPI für Kernphysik Heidelberg, der Albert-Ludwigs-Universität Freiburg, der Johannes Gutenberg-Universität Mainz und der Westfälischen Wilhelms-Universität Münster

„Das weltbeste Resultat zu Dunkler Materie – und wir stehen erst am Anfang!“ So freuen sich Wissenschaftler der XENON-Kollaboration über die ersten Ergebnisse...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

Flugzeugreifen – Ähnlich wie PKW-/LKW-Reifen oder ganz verschieden?

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Myrte schaltet „Anstandsdame“ in Krebszellen aus

22.05.2017 | Biowissenschaften Chemie

Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

22.05.2017 | Physik Astronomie

Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält

22.05.2017 | Biowissenschaften Chemie