Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Ordnung in der Quantenwelt

01.11.2012
MPQ-Wissenschaftler erzeugen mit Laserstrahlen Quantenmaterie mit neuartigen kristallähnlichen Eigenschaften.

Sowohl Graphit als auch Diamant bestehen ausschließlich aus Kohlenstoffatomen. Der kleine aber feine Unterschied zwischen beiden Materialien ist die geometrische Anordnung ihrer Bausteine, mit weitreichenden Folgen für ihre Eigenschaften. Undenkbar, dass ein Stoff beides, d.h. Graphit und Diamant, gleichzeitig sein kann.


Illustration einer Anordnung von fünf Rydberg-Atomen. Grün: Atome im Grundzustand, Rot: angeregte Rydberg-Atome, Violett: Einflusssphäre der Rydberg-Atome

MPQ, Abt. Quanten-Vielteilchensysteme


Unterschiedliche geometrische Konfigurationen der verschiedenen Anregungszustände. a) Einzelne Schnappschüsse von Anregungszuständen mit unterschiedlich vielen Rydberg-Atomen. b) Messergebnisse nach der Gruppierung einer Vielzahl von Einzelbildern gemäß der Zahl der angeregten Rydberg-Atome. c) Ergebnisse der numerischen Rechnungen

MPQ, Abt. Quanten-Vielteilchensysteme

Doch für Quantenmaterie gilt diese Einschränkung nicht, wie jetzt ein Team aus der Abteilung Quanten-Vielteilchensysteme von Prof. Immanuel Bloch (Max-Planck-Institut für Quantenoptik und Ludwig-Maximilians-Universität München) bei Experimenten mit ultrakalten Quantengasen zeigen konnte. Mit Hilfe von Laserstrahlen erreichten die Wissenschaftler, dass sich einzelne Atome zu Strukturen mit einer definierten Geometrie anordneten (Nature, 1. November 2012).

Doch im Unterschied zu klassischen Kristallen existieren dabei alle möglichen geometrischen Konfigurationen gleichzeitig, ähnlich wie sich Schrödingers Katze in einer Überlagerung aus den beiden Zuständen „tot“ und „lebendig“ befindet. Voraussetzung dafür war, dass sich die Atome in einem hoch angeregten sogenannten Rydberg-Zustand befanden. „Solche Rydberg-Gase bergen das Potential, exotische Materiezustände zu realisieren und zum Beispiel magnetische Quantenphasen zu simulieren“, betont Prof. Immanuel Bloch. Unterstützt wurden die experimentellen Arbeiten durch theoretische Modelle, die von einer Gruppe um Dr. Thomas Pohl (Max-Planck-Institut für die Physik komplexer Systeme, Dresden) entwickelt wurden.

Im Experiment wird zunächst eine Wolke aus einigen hundert Rubidiumatomen auf Temperaturen nahe dem absoluten Nullpunkt abgekühlt und in einer Lichtfalle eingefangen. Dieser Gaswolke wird ein periodisches Lichtfeld – ein sogenanntes optisches Gitter – so überlagert, dass die Atome im zentralen Bereich der Falle sehr gleichmäßig verteilt sind. Dann werden die Gasatome mit Laserlicht zu einem Übergang in einen Rydberg-Zustand angeregt, in dem das äußerste Hüllenelektron extrem weit vom Atomkern entfernt ist. Dadurch bläht sich die Einflusssphäre des Atoms wie ein Ballon um etwa das Zehntausendfache auf und erreicht einen vergleichsweise „riesigen“ Durchmesser von mehreren Mikrometern – dies entspricht in etwa einem Zehntel des Durchmessers eines durchschnittlichen Haares. Zwischen diesen „Superatomen“ treten nun Kräfte entsprechend großer Reichweite auf, sogenannte van der Waals-Kräfte.

Die Rydberg-Zustände sind dabei so ausgewählt, dass die van der Waals-Kräfte abstoßend wirken. Daher müssen die angeregten Atome einen Mindestabstand von einigen Mikrometern einhalten. Diese gegenseitige Blockade führt zu räumlichen Korrelationen der Teilchen, so dass sich, je nach Zahl der Rydberg-Atome, ganz unterschiedliche Geometrien ausbilden können (siehe Abb. 1). „Wir müssen uns aber klar machen, dass in unserem angeregten System alle geometrischen Ordnungen gleichzeitig vorliegen. Genauer gesagt, handelt es sich dabei um eine kohärente Überlagerung der einzelnen Anregungszustände“, erklärt Dr. Marc Cheneau, Wissenschaftler am Experiment. „Dieser neue Materiezustand ist ein äußerst zerbrechliches, kristallähnliches Gebilde; er existiert nur, solange die Anregung mit Laserstrahlen aufrechterhalten wird und vergeht, sobald der Strahl abgeschaltet wird.“

Sobald das System jedoch beobachtet wird, zerfällt die Überlagerung in einen spezifischen Anregungszustand, mit einer bestimmten Zahl von Rydberg-Atomen in einer bestimmten geometrischen Anordnung (auch dies wieder analog zu dem Beispiel von Schrödingers Katze, die, wenn man nachschaut, entweder tot oder lebendig anzutreffen ist). In einer Serie von „Schnappschüssen“ können die Wissenschaftler die jeweiligen Anregungszustände sichtbar machen. Sie verwenden dabei eine Technik, bei der einzelne Atome mit sehr hoher räumlicher Auflösung über das von ihnen ausgesandte Fluoreszenzlicht direkt mikroskopisch ab-gebildet werden. „Wir beobachten, dass sich Strukturen herausbilden, deren räumliche Orientierung zufällig ist, die aber eine definierte Geometrie besitzen“, erklärt Peter Schauß, der an diesem Experiment im Rahmen seiner Doktorarbeit forscht. Um die verschiedenen Struk-turen eindeutig erkennen zu können, werden die Bilder nach der Zahl der angeregten Rydberg-Atome gruppiert. Wie in Abb. 2 zu sehen ist, ordnen sich drei Atome zu gleichseitigen Dreiecken an, vier Atome zu Vierecken, fünf Atome zu Fünfecken. Numerische Simulationsrechnungen aus der Gruppe von Dr. Thomas Pohl geben diese Resultate gut wieder.

Was die Ergebnisse für die einzelnen Anregungszustände betrifft, lassen sich die Beobachtungen noch klassisch interpretieren. „Um das quantenphysikalische Verhalten unseres Systems aufzudecken, haben wir die zeitliche Abhängigkeit der Wahrscheinlichkeiten für die einzelnen, durch eine unterschiedliche Zahl von Rydberg-Atomen charakterisierten Anregungszustände untersucht“, erläutert Peter Schauß. „Dabei konnten wir feststellen, dass die Dynamik des Anregungsprozesses zehnmal schneller ist als in klassischen Systemen ohne Blockadeeffekte. Dies ist ein erster Hinweis darauf, dass wir es in der Tat mit kohärenten Quantenzuständen zu tun haben, die eine Überlagerung aus verschiedenen, räumlich geordneten Konfigurationen darstellen.“

In naher Zukunft wollen sich die Wissenschaftler der Herausforderung stellen, gezielt Rydberg-Kristalle mit einer fest definierten Anzahl von angeregten Atomen herzustellen. Die Technik der Adressierung einzelner Atome ließe sich in Verbindung mit dem oben erwähnten Blockadeeffekt dazu nutzen, Quantengatter zu entwickeln, auf deren Basis Quantensimulationen für eine Vielzahl von Fragestellungen möglich wären. Mehrere Rydberg-Atome ließen sich auch zu einem skalierbaren System für Quanteninformationsverarbeitung vernetzen. Olivia Meyer-Streng

Originalveröffentlichung:
Peter Schauß, Marc Cheneau, Manuel Endres, Takeshi Fukuhara, Sebastian Hild, Ahmed Omran, Thomas Pohl, Christian Groß, Stefan Kuhr, and Immanuel Bloch
Observation of spatially ordered structures in a two-dimensional Rydberg gas
Nature, 1. November 2012
Kontakt:
Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik, LMU München
Schellingstr. 4, 80799 München, und
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Tel.: +49 (0) 89 / 32 905 -138
E-Mail: immanuel.bloch@mpq.mpg.de
Dr. Marc Cheneau
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Tel.: +49 (0) 89 / 32 905 -631
E-Mail: marc.cheneau@mpq.mpg.de
Peter Schauß
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Tel.: +49 (0) 89 / 32 905 -218
E-Mail: peter.schauss@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie