Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Optik für Grossteleskop

06.07.2010
Das Very Large Telescope (VLT) in Chile liefert erstaunliche Daten zu Exoplaneten. Neue Aufnahmen zeigen diese Exoplaneten nun detailliert, trotz schwieriger Lichtbedingungen. Ermöglicht werden die Aufnahmen dank einer neuen Optik, an deren Entwicklung das Institut für Astronomie der ETH Zürich massgeblich beteiligt ist.

Sie heissen Antu, Kueyen, Melipal und Yepun, was in der Sprache der Mapuche-Indianer Sonne, Mond, Kreuz des Südens und Venus bedeutet. Hinter den archaischen Namen verbergen sich hochtechnologische Teleskopeinheiten des sogenannten Very Large Telescope (VLT). Die Europäische Südsternwarte (ESO) betreibt dieses einmalige Grossteleskop mit dem schlichten Namen in einer Wüste im Norden Chiles.

Astronomen lieferten in den vergangenen Wochen und Monaten mit Hilfe des VLTs spektakuläre Resultate zu Exoplaneten. Bisher ist es jedoch nur bei einer Handvoll von Exoplaneten gelungen, direkte Bilder von ihnen aufzunehmen. Nun soll eine neue Optik, die von einer internationalen Forschergruppe unter der Leitung des Instituts für Astronomie der ETH Zürich und der Sterrewacht Leiden (NL) entwickelt wurde, die Suche nach und das direkte Fotografieren von Exoplaneten erleichtern. Erste Aufnahmen eines bekannten Exoplaneten sind bereits gelungen, und die Resultate werden in Kürze in Fachzeitschriften publiziert.

Mehr sehen bei zu viel Licht
Koronografen werden eingesetzt, um die helle Lichtscheibe eines Sterns abzu-decken, so dass die sog. Korona, der feine Strahlenkranz um einen Stern oder lichtschwächere Objekte in unmittelbarer Nähe des Sterns besser beobachtet werden können. Dabei muss das Licht im richtigen Masse abgedämpft werden, wie man das zum Beispiel von Sonnenfinsternissen her kennt. Die meisten Koronografen verwenden zwei optische Komponenten, die exakt aufeinander abgestimmt sein müssen, um das Licht des angepeilten Sterns zu unterdrücken. Die neu entwickelte Optik namens Apodizing Phase Plate (APP) verwendet nur eine, welche gezielt die Streuung des Sternenlichts minimiert. Das APP nutzt dafür die Eigenschaften des Lichts, um die störenden Beugungsmuster auf einer Seite des Sterns aufzuheben. Die Oberfläche der neuen Optik, durch die das Licht des Teleskops geschickt wird, lässt sogenannte Phasenvariationen entstehen, welche die Lichtwellen verändern. «Wenn man im Ozean taucht und gen Himmel blickt, sieht man einen annähernd vergleichbaren Effekt. Das Sonnenlicht wird an den Wellen der Wasseroberfläche gebeugt und lässt den Himmel und die Wolken ganz anders erscheinen. Unsere Optik funktioniert nach einem ähnlichen Prinzip», erklärt Sascha Quanz vom Institut für Astronomie der ETH Zürich und Hauptautor der Studie.
Mehr Informationen über „Beta Pic b“
Was die neue APP Technik leistet, konnte das Team der ETH Zürich und des Observatoriums Leiden nun an einem Beispiel unter Beweis stellen. Erst Anfang Juni meldete die ESO, dass es Dr. Anne-Marie Lagrange vom Laboratoire d'Astrophysique in Grenoble am VLT gelungen ist, die Bewegung eines Exopla-neten, der den hellen Stern Beta Pictoris umkreist, direkt zu beobachten. Das Team konnte nun mit Hilfe der neuen Optik diese Entdeckung rund um „Beta Pic b“ – wie der Exoplanet offiziell heisst – bestätigen. Zudem konnten sie Daten liefern, die den Planeten Beta Pic b an einem weiteren Punkt seiner Umlaufbahn zeigen. Eine Umlaufbahn, die bis vor kurzem Rätsel aufgeben hat (siehe Kasten). Da die APP in einem leicht anderen Wellenlängenbereich arbeitet als der Filter, der von Dr. Lagrange verwendet wurde, konnte das Team zusätzlich Informationen über die Temperatur und die Atmosphäre des Exoplaneten sammeln. Sascha Quanz fasst die Resultate wie folgt zusammen: «Zwar war dieser Exoplanet schon vorher bekannt, doch die Resultate zeigen klar die Kapazitäten der neuen Technologie. Sie ist einfach anzuwenden, weil sie keine spezielle Ausrichtung auf den Zielstern erfordert. Nun sollte es uns möglich sein, weitere Exoplaneten nah an ihrem Mutterstern zu finden, wo die meisten Planeten auch vermutet werden.»

Doch auch andere Forschungsgebiete können von der neuen APP Technologie profitieren. «Wir sind gespannt, wie die Astronomen des VLTs die neuen Kapazitäten für ihre Forschung zukünftig einsetzen. Sie kann ja nicht nur für extrasolare Planeten verwendet werden, sondern auch für andere lichtschwache Strukturen um junge Sterne oder Quasare», freut sich Prof. Michael R. Meyer, Co-Autor und Projektleiter des APPs. In Zukunft könnten Daten des Teleskops dabei helfen, neue Exoplaneten zu entdecken und die Temperatur und gegebenenfalls die Masse besser zu bestimmen.

Weitere Informationen

ETH Zürich
Dr. Sascha P. Quanz
Institut für Astronomie
Telefon: +41 44 6332830
quanz@astro.phys.ethz.ch

Franziska Schmid | idw
Weitere Informationen:
http://www.ethz.ch/media/detail?pr_id=994

Weitere Berichte zu: APP Astronomie ESO ETH Exoplanet Grossteleskop Large Hadron Collider Optik Planet Telescope VLT

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau