Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue, offene Software für hochauflösende Mikroskopie

21.03.2016

Bielefelder Physiker berichten in „Nature Communications“ über ihre Neuentwicklung

Mit ihren Spezialmikroskopen können Experimentalphysiker bereits einzelne Moleküle beobachten. Im Gegensatz zu herkömmlichen Lichtmikroskopen müssen die rohen Bilddaten mancher ultrahochauflösender Geräte aber erst bearbeitet werden, damit ein Bild entsteht.


Die Aufnahme zeigt eine Leberzelle vor und nach der Auswertung der Daten durch die an der Universität Bielefeld entwickelten Software.

Foto. Universität Bielefeld


Die Aufnahme zeigt eine Leberzelle vor und nach der Auswertung der Daten durch die an der Universität Bielefeld entwickelten Software.

Foto. Universität Bielefeld

Für die ultrahochauflösende Fluoreszenzmikroskopie, die auch an der Universität Bielefeld in der biophysikalischen Forschung zum Einsatz kommt, haben nun Mitarbeiter der Arbeitsgruppe Biomolekulare Photonik eine neue, offene Softwarelösung entwickelt, um Rohdaten schnell und effizient bearbeiten zu können. Der Bielefelder Physiker Dr. Marcel Müller berichtet in der neuesten Ausgabe der Zeitschrift „Nature Communications“ über die frei zugängliche, neue Software. Der Artikel erscheint am 21. März.

Herkömmliche Lichtmikroskopie kann nur eine definierte untere Auflösungsgrenze erreichen, die durch die Beugung des Lichts auf circa 1/4 eines Mikrometers beschränkt ist. Die hochauflösende Fluoreszenzmikroskopie ermöglicht es, Bilder mit einer Auflösung deutlich unter dieser physikalischen Grenze zu erhalten.

Für die Entwicklung dieser für die biomedizinische Forschung wichtigen Schlüsseltechnologie wurden die Physiker Stefan Hell, Eric Betzig und William Moerner 2014 mit dem Nobelpreis ausgezeichnet. Aktuell nutzen Forschende in diesem Bereich unter anderem die strukturierte Beleuchtung, um eine erhöhte Auflösung zu erzielen.

Dies ist momentan eines der am weitesten verbreiteten Verfahren, um dynamische Prozesse in lebenden Zellen darzustellen und abbilden zu können. Diese Methode erreicht eine Auflösung von 100 Nanometern mit hoher Bildrate, gleichzeitig werden die Proben beim Messen geschont. Diese Methode der hochauflösenden Fluoreszenzmikroskopie wird auch in der Arbeitsgruppe Biomolekulare Photonik an der Bielefelder Fakultät für Physik erfolgreich eingesetzt und weiterentwickelt, zum Beispiel um die Funktion der Leber oder Ausbreitungswege des HI Virus zu untersuchen.

Die mit dieser Methode aufgenommenen Rohbilder können allerdings nicht sofort von den Wissenschaftlerinnen und Wissenschaftlern genutzt werden. „Die Mikroskopie-Methode erfordert eine sehr aufwändige, mathematische Bildrekonstruktion der aufgenommenen Daten. Erst hierdurch entsteht aus den im Mikroskop aufgenommenen Rohdaten ein hochauflösendes Bild“, erläutert Professor Dr. Thomas Huser, Leiter der Arbeitsgruppe Biomolekulare Photonik.

Da dieser Schritt ein mathematisch komplexes Verfahren benutzt, das bisher nur wenigen Forschern zugänglich war, gab es bislang keine offene, für alle Forschenden einfach verfügbare Softwarelösung. Huser bewertet das als große Hürde, um die Technologie nutzen und weiterentwickeln zu können. Diese Lücke füllt nun die in Bielefeld entwickelte Software.

Dr. Marcel Müller aus der AG Biomolekulare Photonik ist es gelungen, eine solch universell einsetzbare Software zu erstellen. „Forschende weltweit arbeiten am Bau neuer, schnellerer und empfindlicherer Mikroskope zur strukturierten Beleuchtung, vor allem zur zweidimensionalen Abbildung lebender Zellen. Für die notwendige Nachverarbeitung müssen sie nun nicht mehr aufwendig eigene Lösungen entwickeln, sondern können direkt unsere Software nutzen, und dank der quelloffenen Verfügbarkeit auch auf ihre Probleme anpassen“, erklärt Müller.

Die Software steht der weltweiten Forschungsgemeinschaft frei als „open source“-Lösung zur Verfügung und wurde schon kurz nach ihrer Ankündigung von Forschenden vor allem in Europa und Asien mehrfach angefordert und installiert. „Wir haben bereits viele positive Rückmeldungen bekommen“, sagt Marcel Müller. „Das spiegelt auch den Bedarf für diese Neuentwicklung wider.“

Originalveröffentlichung:
M. Müller, V. Mönkemöller, S. Hennig, W. Hübner, and T. Huser, Open source image reconstruction of super-resolution structured illumination microscopy data in ImageJ, Nature Communications, 2016

Kontakt:
Professor Dr. Thomas Huser, Universität Bielefeld
AG Biomolekulare Photonik, Fakultät für Physik
Telefon: 0521 106-5451
E-Mail: thomas.huser@physik.uni-bielefeld.de

Dr. Marcel Müller, Universität Bielefeld
AG Biomolekulare Photonik, Fakultät für Physik
Telefon: 0521 106-5449
E-Mail: mmueller@physik.uni-bielefeld.de

Weitere Informationen:

http://www.fairsim.org

Sandra Sieraad | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bielefeld.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics