Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Möglichkeiten für optische Kommunikationstechnologien

08.08.2013
Vakuum ist kein leerer Raum. Dort herrscht ständig Quantenfluktuation – außer man verwendet einen Quantentrick, um sie zu unterdrücken.

Und genau das ist einem Forscherteam am California Institute of Technology (Caltech) unter Beteiligung von Markus Aspelmeyer, Quantenphysiker an der Universität Wien, gelungen.


Elektromikroskopische Aufnahme des optomechanischen Silicium-Mikrochips.
Copyright: Caltech/Amir Safavi-Naeini, Simon Groeblacher, Jeff Hill

Die Gruppe entwickelte ein Mikro-Silizium-System, das einen Lichttyp produzieren kann, der bei gewissen Frequenzen rauschärmer ist. Dieses Licht hat geringere Quantenfluktuationen als üblicherweise im Vakuum vorkommen. Die Ergebnisse erscheinen diese Woche im renommierten Fachjournal "Nature".

"Vakuum ist alles andere als leer – es ist voll mit kaum wahrnehmbarem, elektromagnetischem Rauschen, was eine Konsequenz der Heisenbergschen Unschärferelation ist", erklärt Simon Gröblacher, Postdoc am Caltech, einer der Hauptautoren der Studie und Schüler von Markus Aspelmeyer, Professor für Quantenphysik der Universität Wien und Kooperationspartner von Wiener Seite an diesem Forschungsprojekt.

Gequetsches Licht für eine Fülle an Sensor-Applikationen

Einen speziellen Lichttyp mit weniger Fluktuation kennt man als "gequetschtes Licht". Er wird benötigt, um präzisere Messungen auf einem Niveau mit niedrigerer optischer Leistung durchzuführen als es für normales Licht erlaubt ist. Gequetschtes Licht wurde bereits produziert, bisher jedoch nicht stark verkleinert auf einem Silizium-Mikrochip. Das neue System produziert rauschunterdrücktes Licht so, dass es für eine Fülle von Sensor-Applikationen anwendbar wird. "Dieses System ermöglicht eine neue Reihe von Präzisionsmessungen und ist imstande, Standardlimits der Quantenmechanik zu übertreffen", sagt Oskar Painter, Professor für angewandte Physik am Caltech und Senior-Autor der Studie. "Das Experiment führt viele Aspekte unserer Arbeit in einem winzigen Mikrochip-Paket zusammen, an denen in der Quantenoptik und Präzisionsmessung über die letzten 40 Jahre geforscht wurde."

Erstmals wurde gequetschtes Licht mit einem System aus einfachem Silizium erzeugt. "Wir arbeiteten mit einem Material, das bezogen auf seine optischen Eigenschaften langweilig ist. Indem wir aber Löcher hineinstanzten, schufen wir optomechanische Strukturen, die auf Licht völlig neuartig reagierten", so Oskar Painter, Professor am Caltech und Senior-Autor der Studie. In diesem neuen System bringt ein Wellenleiter aus Silizium Laserlicht in einen optischen Resonator, der aus zwei winzigen Siliziumspiegeln besteht. Einmal dort angelangt, zirkuliert das Licht viele Male hin und zurück – dank der Löcher, die den Wellenleiter, im Prinzip nichts anderes als zwei einfache Balken aus Silizium, in hochreflektierende Spiegel verwandeln. Wenn Photonen, also Lichtteilchen, auf die Spiegel treffen, bringen sie diese Balken nun zum Schwingen. Und der Teilchencharakter des Lichts bringt Quantenfluktuation ein, die wiederum diese Vibration beeinflussen.

Quantenfluktuation interferiert mit Lichtschwankungen

Typischerweise bedeuten solche Fluktuationen, dass man, um ein Signal präzise auszulesen, die Leistung des Lichts erhöhen müsste, um das Rauschen zu überwinden. Aber erhöht man die Leistung des Lichts, entstehen wiederum neue Probleme, zum Beispiel, dass man einen Wärmeüberschuss in das System bringt. Idealerweise sollen also Messungen mit so niedriger Leistung wie nur möglich gemacht werden. Und genau das macht das neu entwickelte System: Das Licht und die Siliziumbalken interagieren miteinander so stark, dass die Balken die Quantenfluktuationen wieder zurück auf das Licht übertragen – so wie bei rauschunterdrückenden Kopfhörern. Die Fluktuationen, welche die Balken bewegen, interferieren mit den Schwankungen des Lichts. Sie heben einander also auf und reduzieren so das Rauschen im Licht. "Licht ist weder ein Teilchen noch eine Welle: Der Teilchencharakter des Lichts ist erforderlich, um die Quantenfluktuationen zu erklären, und der Wellencharakter, um die Interferenz zu verstehen. Man benötigt beide Theorien, um das Experiment zu verstehen", so Amir Safavi-Naeini, Doktorand in der Gruppe von Painter und Mitautor.

Für Markus Aspelmeyer ist dieses Forschungsergebnis ein weiteres Beispiel für die unerwartet rasche Umsetzung von Quantentechnologien: "Ausgangspunkt unserer Zusammenarbeit mit der Gruppe von Oskar Painter am Caltech waren fundamentale Fragestellungen der Quantenphysik. Dass wir auf diesem Weg einen nichtlinearen Kristall durch einen Silizium-Mikrochip ersetzt haben, könnte für die optischen Kommunikationstechnologien, die verstärkt auf integrierte Siliziumschaltkreise setzen, wegweisend sein."

Die Arbeit wurde unterstützt von: Institute for Quantum Information and Matter, Physics Frontier Center, National Science Foundation (NSF), Gordon und Betty Moore Foundation, DARPA/MTO ORCHID, Air Force Office of Scientific Research, Kavli Nanoscience Institute am Caltech, Wiener Wissenschafts-, Forschungs- und Technologiefonds (WWTF), Europäischen Kommission, European Research Council (ERC).

Publikation in "Nature":
Squeezed light from a silicon micromechanical resonator. Amir H. Safavi-Naeini, Simon Gröblacher, Jeff T. Hill, Jasper Chan, Markus Aspelmeyer, and Oskar Painter. August 7, 2013.
Wissenschaftlicher Kontakt
Univ.-Prof. Dr. Markus Aspelmeyer
Quantenoptik, Quantennanophysik und Quanteninformation
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-725 31
markus.aspelmeyer@univie.ac.at
Rückfragen
VCQ Press & Media
Mag. Barbara Suchanek
1090 Wien, Boltzmanngasse 5
T +43-1-4277-725 45
vcq@quantum.at

Michaela Wein | Universität Wien
Weitere Informationen:
http://www.univie.ac.at
http://vcq.quantum.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten