Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Möglichkeiten für optische Kommunikationstechnologien

08.08.2013
Vakuum ist kein leerer Raum. Dort herrscht ständig Quantenfluktuation – außer man verwendet einen Quantentrick, um sie zu unterdrücken.

Und genau das ist einem Forscherteam am California Institute of Technology (Caltech) unter Beteiligung von Markus Aspelmeyer, Quantenphysiker an der Universität Wien, gelungen.


Elektromikroskopische Aufnahme des optomechanischen Silicium-Mikrochips.
Copyright: Caltech/Amir Safavi-Naeini, Simon Groeblacher, Jeff Hill

Die Gruppe entwickelte ein Mikro-Silizium-System, das einen Lichttyp produzieren kann, der bei gewissen Frequenzen rauschärmer ist. Dieses Licht hat geringere Quantenfluktuationen als üblicherweise im Vakuum vorkommen. Die Ergebnisse erscheinen diese Woche im renommierten Fachjournal "Nature".

"Vakuum ist alles andere als leer – es ist voll mit kaum wahrnehmbarem, elektromagnetischem Rauschen, was eine Konsequenz der Heisenbergschen Unschärferelation ist", erklärt Simon Gröblacher, Postdoc am Caltech, einer der Hauptautoren der Studie und Schüler von Markus Aspelmeyer, Professor für Quantenphysik der Universität Wien und Kooperationspartner von Wiener Seite an diesem Forschungsprojekt.

Gequetsches Licht für eine Fülle an Sensor-Applikationen

Einen speziellen Lichttyp mit weniger Fluktuation kennt man als "gequetschtes Licht". Er wird benötigt, um präzisere Messungen auf einem Niveau mit niedrigerer optischer Leistung durchzuführen als es für normales Licht erlaubt ist. Gequetschtes Licht wurde bereits produziert, bisher jedoch nicht stark verkleinert auf einem Silizium-Mikrochip. Das neue System produziert rauschunterdrücktes Licht so, dass es für eine Fülle von Sensor-Applikationen anwendbar wird. "Dieses System ermöglicht eine neue Reihe von Präzisionsmessungen und ist imstande, Standardlimits der Quantenmechanik zu übertreffen", sagt Oskar Painter, Professor für angewandte Physik am Caltech und Senior-Autor der Studie. "Das Experiment führt viele Aspekte unserer Arbeit in einem winzigen Mikrochip-Paket zusammen, an denen in der Quantenoptik und Präzisionsmessung über die letzten 40 Jahre geforscht wurde."

Erstmals wurde gequetschtes Licht mit einem System aus einfachem Silizium erzeugt. "Wir arbeiteten mit einem Material, das bezogen auf seine optischen Eigenschaften langweilig ist. Indem wir aber Löcher hineinstanzten, schufen wir optomechanische Strukturen, die auf Licht völlig neuartig reagierten", so Oskar Painter, Professor am Caltech und Senior-Autor der Studie. In diesem neuen System bringt ein Wellenleiter aus Silizium Laserlicht in einen optischen Resonator, der aus zwei winzigen Siliziumspiegeln besteht. Einmal dort angelangt, zirkuliert das Licht viele Male hin und zurück – dank der Löcher, die den Wellenleiter, im Prinzip nichts anderes als zwei einfache Balken aus Silizium, in hochreflektierende Spiegel verwandeln. Wenn Photonen, also Lichtteilchen, auf die Spiegel treffen, bringen sie diese Balken nun zum Schwingen. Und der Teilchencharakter des Lichts bringt Quantenfluktuation ein, die wiederum diese Vibration beeinflussen.

Quantenfluktuation interferiert mit Lichtschwankungen

Typischerweise bedeuten solche Fluktuationen, dass man, um ein Signal präzise auszulesen, die Leistung des Lichts erhöhen müsste, um das Rauschen zu überwinden. Aber erhöht man die Leistung des Lichts, entstehen wiederum neue Probleme, zum Beispiel, dass man einen Wärmeüberschuss in das System bringt. Idealerweise sollen also Messungen mit so niedriger Leistung wie nur möglich gemacht werden. Und genau das macht das neu entwickelte System: Das Licht und die Siliziumbalken interagieren miteinander so stark, dass die Balken die Quantenfluktuationen wieder zurück auf das Licht übertragen – so wie bei rauschunterdrückenden Kopfhörern. Die Fluktuationen, welche die Balken bewegen, interferieren mit den Schwankungen des Lichts. Sie heben einander also auf und reduzieren so das Rauschen im Licht. "Licht ist weder ein Teilchen noch eine Welle: Der Teilchencharakter des Lichts ist erforderlich, um die Quantenfluktuationen zu erklären, und der Wellencharakter, um die Interferenz zu verstehen. Man benötigt beide Theorien, um das Experiment zu verstehen", so Amir Safavi-Naeini, Doktorand in der Gruppe von Painter und Mitautor.

Für Markus Aspelmeyer ist dieses Forschungsergebnis ein weiteres Beispiel für die unerwartet rasche Umsetzung von Quantentechnologien: "Ausgangspunkt unserer Zusammenarbeit mit der Gruppe von Oskar Painter am Caltech waren fundamentale Fragestellungen der Quantenphysik. Dass wir auf diesem Weg einen nichtlinearen Kristall durch einen Silizium-Mikrochip ersetzt haben, könnte für die optischen Kommunikationstechnologien, die verstärkt auf integrierte Siliziumschaltkreise setzen, wegweisend sein."

Die Arbeit wurde unterstützt von: Institute for Quantum Information and Matter, Physics Frontier Center, National Science Foundation (NSF), Gordon und Betty Moore Foundation, DARPA/MTO ORCHID, Air Force Office of Scientific Research, Kavli Nanoscience Institute am Caltech, Wiener Wissenschafts-, Forschungs- und Technologiefonds (WWTF), Europäischen Kommission, European Research Council (ERC).

Publikation in "Nature":
Squeezed light from a silicon micromechanical resonator. Amir H. Safavi-Naeini, Simon Gröblacher, Jeff T. Hill, Jasper Chan, Markus Aspelmeyer, and Oskar Painter. August 7, 2013.
Wissenschaftlicher Kontakt
Univ.-Prof. Dr. Markus Aspelmeyer
Quantenoptik, Quantennanophysik und Quanteninformation
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-725 31
markus.aspelmeyer@univie.ac.at
Rückfragen
VCQ Press & Media
Mag. Barbara Suchanek
1090 Wien, Boltzmanngasse 5
T +43-1-4277-725 45
vcq@quantum.at

Michaela Wein | Universität Wien
Weitere Informationen:
http://www.univie.ac.at
http://vcq.quantum.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Highlight der Halbleiter-Forschung
20.02.2018 | Technische Universität Chemnitz

nachricht Beobachtung und Kontrolle ultraschneller Prozesse mit Attosekunden-Auflösung
20.02.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kameratechnologie in Fahrzeugen: Bilddaten latenzarm komprimiert

21.02.2018 | Messenachrichten

Mit grüner Chemie gegen Malaria

21.02.2018 | Biowissenschaften Chemie

Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro

21.02.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics