Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Mikroskopie-Methode für bewegte Momente

28.11.2013
Forschern des IMP gelang es in Kollaboration mit der TU Wien, ein neues Mikroskopie-Verfahren zu entwickeln.

Dieses erlaubt es, mit nur einer einzigen Messung und somit ohne Scan-Vorgang ein dreidimensionales Bild der untersuchten Probe zu erzeugen.


Darstellung der Paxillin-Verteilung an der Anheftungsstelle einer Melanomzelle der Maus, unter Verwendung der neuen Technik. IMP


Illustration der Paxillin-Verteilung in einer Maus-Melanomzelle mit der neuen Technik, wobei rot den kleinsten und blau den größten Abstand repräsentiert. IMP

Die neue Lichtmikroskopie-Technik beruht darauf, dass Positionsinformation in Farbinformation des Lichtspektrums umgewandelt und gemessen wird. Das innovative Verfahren mit großem Anwendungs-Potenzial wird diese Woche online in PNAS veröffentlicht.

Für viele Studien im Bereich der Naturwissenschaften ist es wichtig, ein stark vergrößertes und möglichst genaues Abbild einer zu untersuchenden Probe – beispielsweise einer Zelle – zu erhalten. Um kleinste Strukturen oder Objekte zu analysieren, werden heute je nach Fragestellung und Probenaufbereitung verschiedene Mikroskopie-Verfahren eingesetzt.

Ein Schwachpunkt vieler gängiger Techniken ist die Notwendigkeit, eine Probe etliche Male scannen zu müssen, um ein Bild mit Tiefenwirkung zu erzeugen. Vor allem für empfindliche und dynamische Proben ist dies ein Problem. Katrin Heinze und Kareem Elsayad, federführende Wissenschaftler der PNAS-Publikation, gelang es im Rahmen ihrer Arbeit am IMP, diese Schwierigkeit zu umgehen.

Präzise Bilder empfindlicher und dynamischer Proben

Zur mikroskopischen Analyse fixierter oder lebender Zellen bediente sich Elsayad einer speziellen Form der Lichtmikroskopie, der Fluoreszenz-Mikroskopie. Dabei werden Fluoreszenzfarbstoffe, sogenannte Fluorophore, mit Licht einer Wellenlänge angeregt und strahlen dadurch dann selbst Licht einer anderen Wellenlänge ab. Für seinen Aufbau verwendete der Forscher aus der Arbeitsgruppe von Katrin Heinze eine sogenannte biokompatible Nanostruktur: Einen Objektträger aus Quarz mit einer dünnen Beschichtung aus Metall und Dielektroden. Die verwendete Probe markierte er mit Fluorophoren und positionierte sie darüber.

„Das Emissionsspektrum eines fluoreszierenden Farbstoffes über diesem Aufbau ist abhängig von seiner Position. Die Positions-Information des Fluorophors wird in Farbe umgewandelt, und die messen wir “, vereinfacht Elsayad die Erklärung dazu, wie es schlussendlich zur Bildgebung kommt. Mit seiner ausgeklügelten Methode benötigt der Wissenschaftler nur eine einzige Messung und ist somit zeitlich unabhängig von der Scan-Geschwindigkeit oder der Anregung der Fluorophore. „Das schöne an unserer Anordnung ist, dass man relativ einfach sehr genaue Daten bekommt, ohne komplizierte Aufbauten oder Geräte zu benötigen. Unsere Analysen können wir an einem gängigen konfokalen Mikroskop durchführen “ ergänzt Heinze.

Einfache Methode mit großem Potenzial

Elsayad und Heinze konnten bereits beweisen, daß die von ihnen entwickelte Methode auch in der Praxis funktioniert. Gemeinsam mit Kollegen vom IMBA (Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften) verwendeten sie die neue Technik, um Paxillin, ein Protein, das für Zelladhäsion wichtig ist, in lebenden Zellen zu markieren und zu untersuchen. Auch die Dynamik von Filopodien, kleinen Zellfortsätzen, die aus Aktin-Filamenten aufgebaut sind und sich rasch verändern, konnte mit der neuen Methode veranschaulicht werden.

Wurde die Technik ursprünglich für bestimmte Fluorophore entwickelt, kann sie problemlos für weitere adaptiert werden. Auch die Analyse von zwei oder mehreren fluoreszierenden Farbstoffen gleichzeitig ist für die Forscher denkbar. „Generell gibt es eine Vielzahl an möglichen Weiterentwicklungen und Anwendungen für unsere Methode“, blickt Elsayad in die Zukunft. „Etwa das Sequenzieren von DNA. Allerdings müsste man dafür noch viel Zeit und Geld investieren.“ Breites Interesse an der neuen, patentierten Technik ist auf alle Fälle vorhanden, und auch erste Anfragen von großen optischen Unternehmen gab es bereits.

Original-Publikation:
K. Elsayad, A. Ulrich, P.S. Tan, M. Nemethova, J.V. Small, K. Unterrainer and K.G. Heinze: Spectrally coded optical nano-sectioning (SpecON) with biocompatible metal-dielectric coated substrates. PNAS, online Early Edition, 25. November 2013 (doi:10.1073/pnas.1307222110). Finanziert wurde diese Arbeit vom IMP Wien, dem Österreichischen Wissenschaftsfonds (FWF), der Universität Würzburg, der deutschen Forschungsgemeinschaft (DFG) und der Europäischen Union.
Über Kareem Elsayad:
Dr. Kareem Elsayad wurde 1980 in London geboren. Er studierte Physik an der University of Kent (Canterbury) und ging anschließend in die USA. An der Indiana University (Bloomington) promovierte er bei Prof. John Carini zur Physik der kondensierten Materie. Die folgenden Jahre verbrachte er als Postdoc bei Dr. Katrin Heinze am IMP in Wien, wo er hochauflösende Mikroskope und innovative bildgebende Verfahren entwickelte. Seit Mai 2013 leitet Dr. Elsayad die Abteilung „Advanced Microscopy” der “Campus Science Support Facility” (CSF), die wissenschaftliche Dienstleistungen für Unternehmen und Institutionen anbietet.
Über Katrin Heinze:
Dr. Katrin Heinze wurde 1973 in Georgsmarienhütte geboren. Sie studierte Physik an der Universität Oldenburg und ging anschließend an das Max-Planck-Institut für Biophysikalische Chemie, wo sie in der Gruppe von Prof. Schwille über Fluoreszenz-Korrelationsverfahren promovierte. Nach einem Forschungsaufenthalt in Dresden verbrachte Dr. Heinze die folgenden Jahre als Postdoc in der Gruppe von Prof. Wiseman an der McGill Universität in Montreal (QC, Canada). Von 2007 bis 2010 leitete Katrin Heinze die Abteilung „Optical Engineering“ am IMP. Seit 2011 ist sie Gruppenleiterin am Rudolf-Virchow-Zentrum der Universität Würzburg.
Über das IMP:
Das Forschungsinstitut für Molekulare Pathologie betreibt in Wien biomedizinische Grundlagenforschung und wird dabei maßgeblich von Boehringer Ingelheim unterstützt. Mehr als 200 ForscherInnen aus über 30 Nationen widmen sich der Aufklärung grundlegender molekularer und zellulärer Vorgänge, um komplexe biologische Phänomene im Detail zu verstehen und Krankheitsmechanismen zu entschlüsseln.
Rückfragehinweis:
Dr. Heidemarie Hurtl
IMP - Forschungsinstitut für Molekulare Pathologie
Communications
Tel. +43 (0)1 79730-3625
mobil: +43 (0)664 8247910
E-mail: hurtl(at)imp.ac.at
Wissenschaftlicher Kontakt:
elsayad@csf.ac.at
Katrin.heinze@virchow.uni-wuerzburg.de

Dr. Heidemarie Hurtl | idw
Weitere Informationen:
http://www.imp.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie