Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Methode wird bisher genaueste Vermessung von Neutronen ermöglichen

02.10.2015

Unser Universum besteht aus deutlich mehr Materie, als sich mit bisherigen Theorien erklären lässt. Dieser Umstand ist eines der grössten Rätsel der modernen Wissenschaft. Ein Weg, diese Unstimmigkeit zu klären, führt über das sogenannte elektrische Dipolmoment des Neutrons. Forschende am PSI haben in einer internationalen Zusammenarbeit eine neue Methode entwickelt, die helfen wird, dieses Dipolmoment genauer als je zuvor zu bestimmen. Darüber berichten sie in einer Publikation im Fachblatt Physical Review Letters am Freitag, den 2. Oktober 2015.

Um eine fundamentale Eigenschaft des Neutrons zu bestimmen, haben Forschende einer internationalen Kollaboration am Paul Scherrer Institut PSI erfolgreich eine neue experimentelle Methode entwickelt. Neutronen sind Teile der Atomkerne und damit grundlegende Bausteine der uns umgebenden Materie.


Blick ins Spektrometer, das das elektrische Dipolmoment der Neutronen vermisst.

PSI/Zema Chowdhuri

Obwohl sie so allgegenwärtig sind, sind noch immer einige ihrer Eigenschaften ungenügend ergründet; darunter auch das sogenannte elektrische Dipolmoment des Neutrons. Dieses Dipolmoment hat weitreichende Auswirkungen für unser Verständnis des Universums: Es könnte helfen zu erklären, weshalb beim Urknall deutlich mehr Materie als Antimaterie entstand.

Philipp Schmidt-Wellenburg vom PSI und seine Kollegen haben die sogenannte Spin-Echo-Methode für die Vermessung langsamer, sich frei bewegender Neutronen adaptiert. Damit haben sie ein neues, nicht-destruktives Bildgebungsverfahren zur hochgenauen Messung der Neutronengeschwindigkeit erschaffen.

Minutenlang jegliche Störung ausgleichen

Schmidt-Wellenburg erklärt das Grundprinzip des Verfahrens mit der Analogie eines Wettlaufs durch unbekanntes Terrain: „Wir schicken Neutronen – ähnlich wie Läufer – mit einer Art Startschuss los. Nach einer bestimmten Zeit lassen wir sie mittels eines zweiten Signals umkehren.“

Wie ein Echo kehren die Neutronen dann alle zum Ausgangspunkt zurück. Die unterschiedliche Zeitverzögerung jedoch, mit der die einzelnen Neutronen zurückkommen, verrät den Forschenden etwas über die Beschaffenheit des Raums, den sie jeweils durchlaufen haben: „Würde bei gleich sportlichen Läufern einer später zurückkommen als die anderen, liesse sich ganz ähnlich darauf schliessen, dass es auf seiner Strecke mehr Hindernisse gab.“

Grundsätzlich ist die Spin-Echo-Methode nichts Neues. In der Medizin wird sie seit Jahrzehnten in der Magnetresonanztomographie genutzt, wo sie zur Bildgebung von Gewebe und Organen dient. Der Unterschied und damit die grosse Herausforderung für die neue Methode: Die hier verwendeten Neutronen sind extrem langsam und werden minutenlang beobachtet. Solche langsamen Neutronen nennt man auch ultrakalte Neutronen. Ihr Einsatz wiederum hat zur Folge, dass alle experimentellen Rahmenbedingungen über vergleichsweise lange Zeiträume von mehreren Minuten extrem stabil gehalten werden müssen.

„Unter anderem müssen wir ständig jede noch so winzige Änderung des Magnetfeldes ausgleichen. Die kann beispielsweise schon dadurch zustande kommen, dass ein Lastwagen auf der nahegelegenen Landstrasse vorbeifährt“, veranschaulicht Schmidt-Wellenburg den Genauigkeitsgrad des Experiments.

Messungen mit der neuen Methode laufen bereits

All dies ist nötig, um das elektrische Dipolmoment des Neutrons genauer als bisher zu bestimmen. Das vorläufig letzte Experiment zur Vermessung dieser Grösse wurde im Jahr 2006 veröffentlicht. Jedoch ist das Ergebnis von damals noch zu ungenau, als dass sich daraus Schlüsse für die Entstehung des Universums ziehen lassen. Seither mangelte es an Methoden, die eine genauere Messung erlaubten. „Diese Lücke haben wir nun mit unserer adaptierten Spin-Echo-Methode für ultrakalte Neutronen geschlossen“, erklärt Schmidt-Wellenburg.

Seit August 2015 laufen am PSI mit dieser neuen Methode Vermessungen von ultrakalten Neutronen. Am PSI befindet sich eine der weltweit intensivsten Quellen für ultrakalte Neutronen. Das hiesige Langzeit-Experiment wird noch rund ein Jahr weiterlaufen müssen, um die nötige Datenmenge zu haben, mit der sich schliesslich das elektrische Dipolmoment des Neutrons genauer als bisher bestimmen lässt. „Eines Tages können wir dann hoffentlich erklären, weshalb unser Universum aus so viel Materie besteht – warum sich also nicht kurz nach dem Urknall alle Materie und Antimaterie gegenseitig vernichtet hat“, hofft Klaus Kirch, Laborleiter Teilchenphysik am PSI, der an der Studie beteiligt war.

Die neue Spin-Echo-Methode mit ultrakalten Neutronen lässt sich daneben auch für andere fundamentale Messungen nutzen, beispielsweise zur genaueren Vermessung der Lebensdauer des Neutrons. „Ich wage zu behaupten, dass unsere neue Methode in den kommenden zwanzig Jahren in vielen Experimenten mit ultrakalten Neutronen benutzt werden wird“, so Schmidt-Wellenburg.

Text: Paul Scherrer Institut/Laura Hennemann

Über das PSI

Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 1900 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 380 Mio.

Weiterführende Informationen

Suche nach dem elektrischen Dipolmoment des Neutrons am PSI: http://nedm.web.psi.ch

Kontakt/Ansprechpartner

Dr. Philipp Schmidt-Wellenburg, Labor für Teilchenphysik, Paul Scherrer Institut,
Telefon: +41 56 310 5680, E-mail: philipp.schmidt-wellenburg@psi.ch

Prof. Dr. Klaus Kirch, Labor für Teilchenphysik, Paul Scherrer Institut,
Telefon: +41 56 310 3278, E-Mail: klaus.kirch@psi.ch

Originalveröffentlichung

Observation of gravitationally induced vertical striation of polarized ultracold neutrons by spin-echo spectroscopy
S. Afach, N.J. Ayres, G. Ban, G. Bison, K. Bodek, Z. Chowdhuri, M. Daum, M. Fertl, B. Franke, W.C. Griffith, Z.D. Grujic, P.G. Harris, W. Heil, V. Hélaine, M. Kasprzak, Y. Kermaidic, K. Kirch, P. Knowles, H.-C. Koch, S. Komposch, A. Kozela, J. Krempel, B. Lauss, T. Lefort, Y. Lemière, A. Mtchedlishvili, M. Musgrave, O. Naviliat-Cuncic, J.M. Pendlebury, F.M. Piegsa, G. Pignol, C. Plonka-Spehr, P.N. Prashanth, G. Quéméner, M. Rawlik, D. Rebreyend, D. Ries, S. Roccia, D. Rozpedzik, P. Schmidt-Wellenburg, N. Severijns, J.A. Thorne, A. Weis, E. Wursten, G. Wyszynski, J. Zejma, J. Zenner, and G. Zsigmond,
Physical Review Letters, 2 October 2015

Weitere Informationen:

https://psi.ch/zEHx

Dagmar Baroke | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie