Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Methode zur Messung atomarer Kräfte

24.02.2010
Die Miniaturisierung von elektronischen Bauteilen verlangt nach immer sensibleren Messgeräten. Wissenschaftler vom Departement Physik der Universität Basel haben nun die Messmethode der Rasterkraftmikroskopie weiterentwickelt, um atomare Wechselwirkungskräfte in einer bisher unerreichten Genauigkeit zu messen. Die Forschungsergebnisse erschienen in den Fachzeitschriften "Physical Review Letters" und "Physical Review B".

Die Rasterkraftmikroskopie ist seit ihrer Erfindung vor zwanzig Jahren für die Forschung in Biologie, physikalischer Medizin, Chemie und Physik unverzichtbar geworden. Neben der Abbildung von Oberflächen können damit auch Kräfte präzise gemessen werden. Forscher der Universität Basel haben nun die herkömmliche Messmethode der Rasterkraftmikroskopie so weiterentwickelt, dass es möglich ist, atomare Kräfte mit kurzer Reichweite zu bestimmen und zu messen.

Um Kräfte auf atomarer Ebene zu messen, verwendet man seit einigen Jahren einen Federbalken mit einer feinen, auf nur wenige Atome verjüngten Spitze. Für die Messung wird der Balken auf seiner Grundfrequenz zum Schwingen angeregt, so dass die Spitze über der Oberfläche der Probe oszilliert.

Ausgehend von einem bisher vernachlässigten Effekt in der dynamischen Kraftspektroskopie haben die Basler Forscher den Abstand zwischen Spitze und Probe optimiert. Mit einem eigenen mathematischen Modell können jetzt Kraftfelder mit subatomarer Auflösung aus den gemessenen Daten abgeleitet werden [1]. Auf diesen Ergebnissen aufbauend konnten die Wissenschaftler eine neue, wesentlich sensitivere und stabilere Messmethode der Kraftfelder entwickeln - die bimodale Rasterkraftmikroskopie.

Dabei wird die bisher mit der Grundfrequenz erzeugte Schwingung des Federbalkens zusätzlich durch den ersten Oberton bei einer höheren Frequenz angeregt. Die Amplitude dieser Schwingung kann auf Bruchteile eines Billionstel Meters reduziert werden. Sie ist damit wesentlich empfindlicher auf die atomaren Wechselwirkungskräfte mit kurzer Reichweite. Dadurch werden zum einen wegen der grossen Amplitude der Grundschwingung die bisherigen Messungen stabiler und verlässlicher. Zum anderen kann mithilfe der Oberschwingung eine hochsensitive Kraftmessung erfolgen [2].

Durch die Nutzung weiterer Schwingungsparameter konnten die Forscher die bimodale Rasterkraftmikroskopie noch weiter verbessern und damit Kraftfelder auf einer Graphitoberfläche bei Raumtemperatur erfolgreich messen, was bisher aufgrund der sehr schwachen Wechselwirkungskräfte nicht möglich war. Die neue Methode erlaubt, selbst solche winzigen atomaren Kräfte - im Bereich von Billionstel Newton - zu messen und daraus konkrete Aussagen über die atomare Struktur von Oberflächen abzuleiten [3].

Originalbeiträge
[1] Shigeki Kawai, Thilo Glatzel, Sascha Koch, Bartosz Such, Alexis Baratoff, and Ernst Meyer
Time-averaged cantilever deflection in dynamic force spectroscopy
Phys. Rev. B 80, 085422 (2009) | doi: 10.1103/PhysRevB.80.085422
[2] Shigeki Kawai, Thilo Glatzel, Sascha Koch, Bartosz Such, Alexis Baratoff, and Ernst Meyer
Systematic Achievement of Improved Atomic-Scale Contrast via Bimodal Dynamic Force Microscopy

Phys. Rev. Lett. 103, 220801 (2009) | doi: 10.1103/PhysRevLett.103.220801

[3] Shigeki Kawai, Thilo Glatzel, Sascha Koch, Bartosz Such, Alexis Baratoff, and Ernst Meyer
Ultrasensitive detection of lateral atomic-scale interactions on graphite (0001) via bimodal dynamic force measurements

Phys. Rev. B 81, 085420 (2010) | doi: 10.1103/PhysRevB.81.085420

Weitere Auskünfte
Dr. Thilo Glatzel, Departement Physik der Universität Basel, Tel. +41 (0)61 267 37 30, +41 (0)61 267 38 24, E-Mail: thilo.glatzel@unibas.ch

Hans Syfrig Fongione | idw
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie