Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Methode für die Datenübertragung mit Licht

29.05.2017

Der steigende Bedarf an schneller, leistungsfähiger Datenübertragung erfordert die Entwicklung neuer Verfahren zur verlustarmen und störungsfreien Übermittlung von optischen Informationssignalen. Wissenschaftler der Universität Johannesburg, des Instituts für Angewandte Optik der Friedrich-Schiller-Universität Jena und des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) präsentieren im Fachblatt „Journal of Optics“ eine neue Möglichkeit, glasfaserbasierte und kabellose optische Datenübertragung effizient miteinander zu verbinden.

Dank des Internets können wir in Sekundenbruchteilen mit Menschen rund um den Globus in Kontakt treten. Damit die Kommunikation reibungslos funktioniert, übertragen weltumspannende faseroptische Netzwerke riesige Datenmengen mit Hilfe von Licht. Um die hohen Übertragungskapazitäten zu erreichen, werden Bündel mehrerer optischer Signale gleichzeitig durch eine Faser geleitet (Multiplexing) und am Ende der Übertragungsstrecke wieder separiert (Demultiplexing). Die Hauptkommunikationsstränge sind für die Mehrheit der Breitbandnutzer jedoch nicht direkt zugänglich und somit nicht nutzbar.


Schema der pixelweisen Übertragung eines Graustufenbildes über eine kombinierte Freiraum-Faser-Freiraum-Strecke. Je eine OAM-Eigenmode des Laserstrahls kodiert für einen Grauwert des Bildes.

Leibniz-IPHT

Eine Option zur Lösung dieser als Last-Mile-Problem bekannten Schwierigkeit besteht darin, Privathaushalte und Geschäfte mittels optischer Freiraumübertragung, also kabellos, an die Glasfasernetzwerke anzuschließen. Ein Team von Wissenschaftlern aus Südafrika, der Universität Jena und des Leibniz-IPHT in Jena erforschte eine Übertragungsmethode, die die Verbindung von faseroptischer und kabelloser Informationsübermittlung ermöglicht.

Als Informationsträger nutzten sie infrarotes Licht mit speziellen räumlichen Intensitätsverteilungen (Gauss-Laguerre-Moden), die einen Bahndrehimpuls, das Orbital Angular Momentum (OAM), aufweisen. Zur Übertragung der Lichtsignale diente eine, von IPHT-Fasertechnologen entworfene und gefertigte, spezielle Lichtleitfaser. Siegmund Schröter, ebenfalls Wissenschaftler am Leibniz-IPHT, erläutert die Vorteile der Methode:

„Durch den besonderen Verlauf des Brechungsindexes in der optischen Faser besitzen die Lichtbündel (Moden), im Lichtleiter charakteristische spezifische Intensitätsverteilungen, die den Gauss-Laguerre-Moden im Freiraum sehr ähnlich sind. Dadurch können wir das Licht vom Freiraum effektiv in die Lichtleitfaser und von deren Ausgang zurück in den Freiraum koppeln. Die bisher nötigen, aufwändigen Demultiplexing- und Multiplexingschritte entfallen.“

Dass sich die neue Methode zur effizienten Datenübertragung eignet, demonstrierten die Forscher anhand einer hybriden Freiraum-Faseroptik-Freiraum-Verbindung. Sie übertrugen mit der Anordnung ein 481x600 Pixel Graustufenbild des schottischen Physikers James Clerk Maxwell über eine Strecke von insgesamt 4,5 Metern. Dazu kodierten sie das Graustufenbild in ein kombiniertes Lichtbündel, das aus mehreren räumlichen Verteilungen - mit jeweils unterschiedlichen OAM-Zuständen - besteht.

Dieses Lichtbündel leiteten die Wissenschaftler zuerst über eine Freiraumstrecke, dann durch die spezielle optische Glasfaser und zuletzt wieder durch den freien Raum. „Mit dieser Machbarkeitsstudie haben wir bewiesen, dass das OAM zur effizienten Informationsübertragung vom Freiraum über Lichtleitfasern zum Freiraum geeignet ist.

Dadurch können wir die Verluste bei der Lichtleitung innerhalb jeweils eines Übertragungskanals und das Übersprechen zwischen unterschiedlichen Kanälen sehr gering halten“, so Michael Duparré, der am Leibniz-IPHT an neuen Methoden für die optische Signalübertragung forscht. „Bevor wir die kabellose optische Datenübertragung, die derzeit nur für wenige spezielle Anwendungen wie der Kommunikation zwischen Satelliten dient, in Haushalten einsetzen können, ist noch viel Forschungsarbeit nötig.“

Das internationale Wissenschaftler-Team arbeitet auf dem Gebiet der Faseroptik seit mehreren Jahren erfolgreich zusammen. Die aktuellen Ergebnisse veröffentlichte es im internationalen Fachblatt „Journal of Optics“, das den Beitrag als besonderes Highlight des Jahres 2016 würdigte. Den Originalbeitrag und weitere Highlight-Artikel finden Sie auf der Seite des Verlags.

Weitere Informationen:

http://iopscience.iop.org/journal/2040-8986/page/Highlights-of-2016
https://www.leibniz-ipht.de/aktuelles/detail/neue-methode-fuer-die-datenuebertra...

Dr. Anja Schulz | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weniger (Flug-)Lärm dank Mathematik
21.09.2017 | Forschungszentrum MATHEON ECMath

nachricht Der stotternde Motor im Weltall
21.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften