Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Methode erschließt Exoplanetenchemie auch kleineren Teleskopen

05.02.2010
Eine Gruppe von Astronomen, der auch Forscher des Max-Planck-Instituts für Astronomie angehören, hat eine neue Methode zur Untersuchung der Atmosphären von Exoplaneten (Planeten, die andere Sterne umkreisen als die Sonne) entwickelt und getestet.

Damit werden solche Messungen erstmals auch Beobachtern mit vergleichsweise kleinen Teleskopen (Spiegeldurchmesser einige Meter) zugänglich. Die ersten Beobachtungen mit der neuen Methode lieferten grundlegend neue Erkenntnisse über die Eigenschaften von Exoplanetenatmosphären. Die Ergebnisse werden am 4. Februar 2010 in der Fachzeitschrift Nature veröffentlicht.


Messung des Spektrums eines Exoplaneten
Bild: MPIA

Untersuchungen der chemischen Zusammensetzung der Atmosphären von Exoplaneten bedienen sich der Spektroskopie: der systematischen Untersuchung des Lichts, das ein Sternensystem bei den verschiedenen Farben (Wellenlängen) aussendet. Bislang wurden für solche Untersuchungen Weltraumteleskope oder die größten und fortschrittlichsten bodengebundenen Teleskope der Welt benötigt (vgl. MPIA-Pressemitteilung 2010-01-13). Jetzt macht eine neue Methode zur Datenauswertung, die eine Gruppe von Astronomen aus den Vereinigten Staaten, Großbritannien und Deutschland entwickelt und getestet hat, die Exoplaneten-Spektroskopie deutlich kleineren (und weiter verbreiteten) bodengebundenen Teleskopen zugänglich.

Für die Entwicklung der neuen Methode benötigten die Forscher gut zwei Jahre - danach aber konnten sie die spektroskopischen Beobachtungen an dem Exoplaneten HD 189733 b, die sie 2007 mit einem 3-Meter-Teleskop vorgenommen hatten, angemessen auswerten und in der Atmosphäre des Planeten das Vorkommen spezifischer Moleküle wie Methan und Kohlendioxid nachweisen. Der Planet, ein Gasriese ähnlich dem Jupiter, umkreist 63 Lichtjahre von der Erde entfernt den Stern HD 189733 A im Sternbild Fuchs (Vulpecula). Dabei konnten die Astronomen einen Teil des Spektrums aufnehmen, der mit heutigen Weltraumteleskopen nicht beobachtet werden kann.

Von der Erde aus gesehen verschwindet der Planet HD 189733 b periodisch hinter seinem Heimatstern. Das Spektrum des Planeten lässt sich bestimmen, indem man das von dem System direkt vor einer solchen "Planetenfinsternis" empfangene Licht mit dem während der Finsternis empfangenen Licht vergleicht. Allerdings sorgen Turbulenzen in der Erdatmosphäre (die auch für das nächtliche Funkeln der Sterne verantwortlich sind) für Störungen, deren Einfluss sich nur schwer berücksichtigen lässt. Jeroen Bouwman vom Max-Planck-Institut für Astronomie erklärt: "Mit einer neu entwickelten Kalibrationsmethode können wir die Lichtveränderungen, die sich durch die Planetenfinsternis ergeben, von den Lichtveränderungen durch atmosphärische Turbulenzen und von Störsignalen des Detektors unterscheiden." Zuvor waren Messungen dieser Art nur mit Hilfe von Weltraumteleskopen möglich gewesen, deren Beobachtungszeit freilich streng rationiert ist. Nun sind sie mit bodengebundenen Teleskopen mit Spiegeldurchmessern bis hinunter zu einigen Metern durchführbar, von denen es weltweit einige Dutzende gibt - und dies ohne die Notwendigkeit spezialisierter Spektrografen.

Der Erstautor der Studie, Mark Swain vom Jet Propulsion Laboratory der NASA (ein ehemaliger Gastwissenschaftler am MPIA) erklärt weiter: "Dass wir unsere neuen Ergebnisse mit einem vergleichsweise kleinen, bodengebundenen Teleskop gewinnen konnten, ist sehr aufregend. Denn es bedeutet, dass die größten bodengebundenen Teleskope mit Hilfe unserer neuen Methode in der Lage sein müssten, die Atmosphären erdähnlicher Planeten zu untersuchen." Untersuchungen der chemischen Eigenschaften erdähnlicher Planeten sind ein wichtiger Schritt für die Suche nach bewohnbaren Exoplaneten, oder sogar nach Spuren von Leben auf solchen Planeten - ein Schlüsselziel der modernen Astronomie, das derzeit freilich noch in weiter Ferne liegt. Koautor Thomas Henning, Direktor am Max-Planck-Institut für Astronomie, fügt hinzu: "Hier zeigt sich das Potenzial von neuen Instrumenten wie dem Spektrografen LUCIFER, der derzeit am Large Binocular Telescope in Arizona installiert wird."

Die ersten Beobachtungen mit der neuen Methode haben bereits interessante Ergebnisse zu den Eigenschaften von Exoplaneten-Atmosphären erbracht. Bisherige Modelle basierten auf der Annahme, dass Veränderungen in der Atmosphäre vergleichsweise langsam ablaufen. Den Forschern war bewusst, dass dies eine zu starke Vereinfachung ist. Allerdings reichten die verfügbaren Beobachtungsdaten noch nicht aus, um zwischen solchermaßen vereinfachten und realistischeren Modellen zu unterscheiden konnten. Die neuen Daten lassen genau solch eine Unterscheidung zu, und ermöglichen es den Astronomen auf diese Weise, neue, realistischere Modelle für Exoplanetenatmosphären zu entwickeln.

Kontakt

Dr. Jeroen Bouwman (Koautor)
Max-Planck-Institut für Astronomie, Heidelberg
(0|+49) 6221 - 528 404
E-mail: bouwman@mpia.de
Dr. Markus Pössel (Öffentlichkeitsarbeit)
Max-Planck-Institut für Astronomie, Heidelberg
Tel.:(0|+49) 6221 - 528 261
E-mail: poessel@mpia.de

Dr. Markus Pössel | Max-Planck-Institut
Weitere Informationen:
http://www.mpia.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Atome rennen sehen - Phasenübergang live beobachtet
30.03.2017 | Universität Duisburg-Essen

nachricht Flipper auf atomarem Niveau
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE