Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Messtechnik für Nanostrukturen

20.08.2014

Zwei elektrische Isolatoren aneinander bringen und dadurch einen elektrischen Supraleiter erzeugen: Wer solche Phänomene in Nanostrukturen analysieren will, stößt schnell an messtechnische Grenzen – es sei denn, er benutzt eine neue Methode, die Würzburger Physiker mitentwickelt haben.

Moderne elektronische Geräte beinhalten Bauelemente wie Transistoren und Dioden, die aus Halbleiterschichten aus Silizium, Germanium oder Gallium und Arsen bestehen. Die Halbleiter aus diesen chemischen Elementen haben relativ einfache Eigenschaften, die wissenschaftlich gut charakterisiert sind.


Röntgeninterferenzmuster, das bei der Untersuchung von komplexen Nano-Schichtstrukturen gemessen wird. Die Skizze verdeutlicht den Strahlengang des Röntgenlichts bezüglich der Probenoberfläche.

Grafik: Sebastian Macke

Entsprechend einfach sind auch die Anwendungsmöglichkeiten solcher Schichtstrukturen in Speicherbausteinen und Mikroprozessoren: „Technologische Verbesserungen zielen überwiegend auf eine weitere Miniaturisierung, auf eine zunehmende Dichte der Bauelemente und auf eine höhere Geschwindigkeit“, so Physikprofessor Vladimir Hinkov von der Universität Würzburg.

Welche Elemente interessante Phänomene zeigen

Völlig neue Möglichkeiten verspricht sich die Wissenschaft dagegen von Bauelementen, die Mangan, Nickel, Titan und andere Elemente aus den sogenannten Nebengruppen enthalten.

„Diese Metalle besitzen Elektronenwolken, die komplexere Bindungen und Elektronenkonfigurationen ermöglichen. Das führt zu physikalischen Phänomenen, die bei Halbleitern unbekannt sind“, sagt Hinkov. Als Beispiele für solche Phänomene nennt er den kolossalen Magnetowiderstand und verschiedene magnetische Ordnungen, die allesamt bei Oxiden dieser Metalle auftreten.

Noch interessantere Anwendungsmöglichkeiten eröffnen sich, wenn man diese Oxide in hauchdünnen Schichten aufeinander bringt, die teilweise nur wenige Atomlagen dick sind.

So verschwindet an der Grenzfläche zwischen Strontium-Titanat (SrTiO3) und Lanthan-Aluminat (LaAlO3) komplett der elektrische Widerstand – obwohl beide Materialien für sich genommen einen sehr hohen elektrischen Widerstand haben, werden sie an ihrer gemeinsamen Grenzfläche zum Supraleiter. Nicht verwunderlich also, dass solche Nanostrukturen intensiv erforscht werden.

Warum die Analyse der Nanostrukturen kompliziert ist

Chemische Zusammensetzung, magnetische Ordnung, Verteilung der Elektronen in den Elektronenwolken: „Die Erfassung dieser Eigenschaften klingt einfach, ist aber in Wahrheit hoch kompliziert und mit herkömmlichen Messmethoden in den wenigsten Fällen möglich“, sagt der Würzburger Physikprofessor. Ein Grund dafür: Die interessanten Phänomene spielen sich im Nanokosmos ab, auf Längenskalen von nur wenigen Nanometern.

Zwar gibt es Messmethoden mit einer Auflösung im Nanometerbereich, doch die haben Nachteile. Beispiel: die weit verbreitete Rastertransmissionselektronenmikroskopie (STEM). Bei ihr werden aus einer Nanostruktur dünne Scheiben herausgeschnitten und mit einem Elektronenstrahl abgetastet. Die Probe muss also für die Untersuchung zerstört werden – doch dabei können sich die Eigenschaften verändern, die man eigentlich analysieren will.

Was die neu entwickelte Messmethode leisten kann

Mit Vladimir Hinkov als Koordinator hat jetzt ein Wissenschaftler-Team aus Deutschland, Kanada und den USA eine viel versprechende neue Messmethode entwickelt und im Fachblatt „Advanced Materials“ vorgestellt. Sie arbeitet zerstörungsfrei, bietet eine Auflösung im Nanometerbereich, identifiziert die beteiligten chemischen Elemente und kann die magnetische Ordnung sowie die Elektronenverteilung bestimmen.

Geringe Spuren von Elementen, die tief in der Nanostruktur verborgen sind, kann man mit der Methode ebenfalls nachweisen. Selbst in Strukturen aus vielen Elementen und mit komplexen Schichtabfolgen lassen sich damit die chemischen Profile bestimmen.

Die Methode, eine Weiterentwicklung der resonanten Röntgenreflektometrie, basiert auf der Streuung von Röntgenstrahlung mit einer Wellenlänge von wenigen Nanometern an den Grenzflächen der Schichtstruktur: Die verschiedenen gestreuten Teilstrahlen werden dann zum Überlagern gebracht und gemessen.

Die Messdaten liefern, nach entsprechender Bearbeitung, ein tiefenaufgelöstes Bild der Struktur. Darin ähnelt die Methode der optischen Holographie, die benutzt wird, um Abbildungen mit räumlicher Auflösung zu erzeugen.

Warum für den Erfolg viele Spezialisten nötig waren

„Ein Unterfangen in dieser Größenordnung war nur unter der Beteiligung von Kollegen aus verschiedensten Teildisziplinen möglich“, sagt Hinkov. So braucht es zunächst Röntgenlicht von hoher Intensität und Qualität, wie es nur an Synchrotronen erzeugt werden kann. Die Messungen finden an hoch spezialisierten Instrumenten statt, die die Forscher direkt am Synchrotron aufgebaut haben.

Nötig sind weiterhin Nanostrukturen von höchster Qualität, um die Methode zu verfeinern und zu testen. Die Messdaten werden mit einer speziell entwickelten Software ausgewertet, und schließlich müssen die Ergebnisse mit Theoretikern diskutiert werden, um ein vertieftes Verständnis der Phänomene zu erlangen.

Wie die nächsten Forschungsschritte aussehen

„Wir arbeiten seit mehreren Jahren intensiv an diesem Projekt, und jetzt hat sich unsere Geduld voll ausgezahlt“, freut sich der Würzburger Physiker. Zwar seien die untersuchten Schichtstrukturen noch keine Bauelemente für Anwendungen. Doch die verwendeten Materialien seien technologisch relevant und die nächsten Entwicklungsschritte klar:

„Die Erforschung von Strukturen mit interessanten magnetischen und elektronischen Eigenschaften, und in nicht allzu ferner Zukunft das Design von Elementen mit maßgeschneiderten physikalischen und technologischen Eigenschaften“, so Hinkov. Schaltbarer Magnetismus, Supraleitung und neuartige Sensoren seien einige Anwendungen, die hier vielversprechende Möglichkeiten bieten.

“Element Specific Monolayer Depth Profiling”, Sebastian Macke, Abdullah Radi, Jorge E. Hamann-Borrero, Martin Bluschke, Sebastian Brück, Eberhard Goering, Ronny Sutarto, Feizhou He, Georg Cristiani, Meng Wu, Eva Benckiser, Hanns-Ulrich Habermeier, Gennady Logvenov, Nicolas Gauquelin, Gianluigi A. Botton, Adam P. Kajdos, Susanne Stemmer, Georg A. Sawatzky, Maurits W. Haverkort, Bernhard Keimer, and Vladimir Hinkov. Advanced Materials, 8. August 2014, DOI: 10.1002/adma.201402028

Kontakt

Prof. Dr. Vladimir Hinkov, Lehrstuhl für Experimentelle Physik IV, Universität Würzburg, hinkov@physik.uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Extra-Sekunde zum neuen Jahr
08.12.2016 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System
08.12.2016 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops