Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Messtechnik für Nanostrukturen

20.08.2014

Zwei elektrische Isolatoren aneinander bringen und dadurch einen elektrischen Supraleiter erzeugen: Wer solche Phänomene in Nanostrukturen analysieren will, stößt schnell an messtechnische Grenzen – es sei denn, er benutzt eine neue Methode, die Würzburger Physiker mitentwickelt haben.

Moderne elektronische Geräte beinhalten Bauelemente wie Transistoren und Dioden, die aus Halbleiterschichten aus Silizium, Germanium oder Gallium und Arsen bestehen. Die Halbleiter aus diesen chemischen Elementen haben relativ einfache Eigenschaften, die wissenschaftlich gut charakterisiert sind.


Röntgeninterferenzmuster, das bei der Untersuchung von komplexen Nano-Schichtstrukturen gemessen wird. Die Skizze verdeutlicht den Strahlengang des Röntgenlichts bezüglich der Probenoberfläche.

Grafik: Sebastian Macke

Entsprechend einfach sind auch die Anwendungsmöglichkeiten solcher Schichtstrukturen in Speicherbausteinen und Mikroprozessoren: „Technologische Verbesserungen zielen überwiegend auf eine weitere Miniaturisierung, auf eine zunehmende Dichte der Bauelemente und auf eine höhere Geschwindigkeit“, so Physikprofessor Vladimir Hinkov von der Universität Würzburg.

Welche Elemente interessante Phänomene zeigen

Völlig neue Möglichkeiten verspricht sich die Wissenschaft dagegen von Bauelementen, die Mangan, Nickel, Titan und andere Elemente aus den sogenannten Nebengruppen enthalten.

„Diese Metalle besitzen Elektronenwolken, die komplexere Bindungen und Elektronenkonfigurationen ermöglichen. Das führt zu physikalischen Phänomenen, die bei Halbleitern unbekannt sind“, sagt Hinkov. Als Beispiele für solche Phänomene nennt er den kolossalen Magnetowiderstand und verschiedene magnetische Ordnungen, die allesamt bei Oxiden dieser Metalle auftreten.

Noch interessantere Anwendungsmöglichkeiten eröffnen sich, wenn man diese Oxide in hauchdünnen Schichten aufeinander bringt, die teilweise nur wenige Atomlagen dick sind.

So verschwindet an der Grenzfläche zwischen Strontium-Titanat (SrTiO3) und Lanthan-Aluminat (LaAlO3) komplett der elektrische Widerstand – obwohl beide Materialien für sich genommen einen sehr hohen elektrischen Widerstand haben, werden sie an ihrer gemeinsamen Grenzfläche zum Supraleiter. Nicht verwunderlich also, dass solche Nanostrukturen intensiv erforscht werden.

Warum die Analyse der Nanostrukturen kompliziert ist

Chemische Zusammensetzung, magnetische Ordnung, Verteilung der Elektronen in den Elektronenwolken: „Die Erfassung dieser Eigenschaften klingt einfach, ist aber in Wahrheit hoch kompliziert und mit herkömmlichen Messmethoden in den wenigsten Fällen möglich“, sagt der Würzburger Physikprofessor. Ein Grund dafür: Die interessanten Phänomene spielen sich im Nanokosmos ab, auf Längenskalen von nur wenigen Nanometern.

Zwar gibt es Messmethoden mit einer Auflösung im Nanometerbereich, doch die haben Nachteile. Beispiel: die weit verbreitete Rastertransmissionselektronenmikroskopie (STEM). Bei ihr werden aus einer Nanostruktur dünne Scheiben herausgeschnitten und mit einem Elektronenstrahl abgetastet. Die Probe muss also für die Untersuchung zerstört werden – doch dabei können sich die Eigenschaften verändern, die man eigentlich analysieren will.

Was die neu entwickelte Messmethode leisten kann

Mit Vladimir Hinkov als Koordinator hat jetzt ein Wissenschaftler-Team aus Deutschland, Kanada und den USA eine viel versprechende neue Messmethode entwickelt und im Fachblatt „Advanced Materials“ vorgestellt. Sie arbeitet zerstörungsfrei, bietet eine Auflösung im Nanometerbereich, identifiziert die beteiligten chemischen Elemente und kann die magnetische Ordnung sowie die Elektronenverteilung bestimmen.

Geringe Spuren von Elementen, die tief in der Nanostruktur verborgen sind, kann man mit der Methode ebenfalls nachweisen. Selbst in Strukturen aus vielen Elementen und mit komplexen Schichtabfolgen lassen sich damit die chemischen Profile bestimmen.

Die Methode, eine Weiterentwicklung der resonanten Röntgenreflektometrie, basiert auf der Streuung von Röntgenstrahlung mit einer Wellenlänge von wenigen Nanometern an den Grenzflächen der Schichtstruktur: Die verschiedenen gestreuten Teilstrahlen werden dann zum Überlagern gebracht und gemessen.

Die Messdaten liefern, nach entsprechender Bearbeitung, ein tiefenaufgelöstes Bild der Struktur. Darin ähnelt die Methode der optischen Holographie, die benutzt wird, um Abbildungen mit räumlicher Auflösung zu erzeugen.

Warum für den Erfolg viele Spezialisten nötig waren

„Ein Unterfangen in dieser Größenordnung war nur unter der Beteiligung von Kollegen aus verschiedensten Teildisziplinen möglich“, sagt Hinkov. So braucht es zunächst Röntgenlicht von hoher Intensität und Qualität, wie es nur an Synchrotronen erzeugt werden kann. Die Messungen finden an hoch spezialisierten Instrumenten statt, die die Forscher direkt am Synchrotron aufgebaut haben.

Nötig sind weiterhin Nanostrukturen von höchster Qualität, um die Methode zu verfeinern und zu testen. Die Messdaten werden mit einer speziell entwickelten Software ausgewertet, und schließlich müssen die Ergebnisse mit Theoretikern diskutiert werden, um ein vertieftes Verständnis der Phänomene zu erlangen.

Wie die nächsten Forschungsschritte aussehen

„Wir arbeiten seit mehreren Jahren intensiv an diesem Projekt, und jetzt hat sich unsere Geduld voll ausgezahlt“, freut sich der Würzburger Physiker. Zwar seien die untersuchten Schichtstrukturen noch keine Bauelemente für Anwendungen. Doch die verwendeten Materialien seien technologisch relevant und die nächsten Entwicklungsschritte klar:

„Die Erforschung von Strukturen mit interessanten magnetischen und elektronischen Eigenschaften, und in nicht allzu ferner Zukunft das Design von Elementen mit maßgeschneiderten physikalischen und technologischen Eigenschaften“, so Hinkov. Schaltbarer Magnetismus, Supraleitung und neuartige Sensoren seien einige Anwendungen, die hier vielversprechende Möglichkeiten bieten.

“Element Specific Monolayer Depth Profiling”, Sebastian Macke, Abdullah Radi, Jorge E. Hamann-Borrero, Martin Bluschke, Sebastian Brück, Eberhard Goering, Ronny Sutarto, Feizhou He, Georg Cristiani, Meng Wu, Eva Benckiser, Hanns-Ulrich Habermeier, Gennady Logvenov, Nicolas Gauquelin, Gianluigi A. Botton, Adam P. Kajdos, Susanne Stemmer, Georg A. Sawatzky, Maurits W. Haverkort, Bernhard Keimer, and Vladimir Hinkov. Advanced Materials, 8. August 2014, DOI: 10.1002/adma.201402028

Kontakt

Prof. Dr. Vladimir Hinkov, Lehrstuhl für Experimentelle Physik IV, Universität Würzburg, hinkov@physik.uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik