Neue Materialklasse für die organische Elektronik

Ladungsträger nehmen stets den Weg senkrecht zu den Ebenen, zeigte die Gruppe um Merschjann: Dabei erzeugt Licht ein Elektron-Loch-Paar. C. Merschjann

Polymere Kohlenstoffnitride sind organische Verbindungen, die als gelbes Pulver aus Myriaden von Nanokristallen synthetisiert werden. Die kristalline Struktur ähnelt der von Graphit, denn die Kohlenstoffnitrid-Gruppen sind nur in der Ebene chemisch verbunden, während zwischen den Ebenen nur schwache „Van der Waals-Kräfte“ für den Zusammenhalt sorgen.

Dass Licht in dieser Materialklasse ein Elektron-Loch-Paar erzeugen kann, war bereits bekannt. So gab es schon zahlreiche Versuche, polymere Kohlenstoffnitride als preiswerte Photokatalysatoren für die solare Wasserspaltung einzusetzen, allerdings ist die Effizienz bislang vergleichsweise gering.

Nun hat ein Team um Dr. Christoph Merschjann (HZB, Freie Universität Berlin) und Prof. Dr. Stefan Lochbrunner (Universität Rostock) erstmals einen genauen Blick in die Prozesse bei der lichtinduzierten Ladungstrennung geworfen. „Das interessanteste Ergebnis ist, dass Ladungen dabei praktisch nur entlang einer Dimension transportiert werden, und zwar senkrecht zu den graphitähnlichen Schichten“, erklärt Merschjann.

Dabei erzeugt Licht ein Elektron-Loch-Paar, das sich anschließend in entgegengesetzte Richtungen auseinanderbewegt. Mit Hilfe von Femtosekundenspektroskopie sowie weiteren spektroskopischen zeitaufgelösten Methoden konnten sie erstmals quantitativ Beweglichkeit und Lebensdauern der Ladungsträger bestimmen.

Dabei zeigte sich, dass die Beweglichkeit ähnliche Werte wie in konventionellen organischen Halbleitermaterialien erreicht. Darüber hinaus bleiben die Ladungsträger lange erhalten, bevor sie wieder „rekombinieren“.

Polymere Kohlenstoffnitride sind nicht nur ungiftig und kostengünstig, sondern auch extrem belastbar, da sie chemisch sehr stabil sind und Temperaturen bis circa 500 °C standhalten. Bauelemente aus solchen Verbindungen könnten also in Umgebungen eingesetzt werden, die für die heutige organische Elektronik nicht geeignet sind.

Besonders interessant findet Merschjann jedoch die Perspektive, diese Verbindungen geordnet z.B. auf Graphen aufwachsen zu lassen. Denn Graphen besitzt eine extrem hohe Leitfähigkeit in der Ebene, während die Kohlenstoffnitride im Wesentlichen nur senkrecht dazu leitfähig sind.

„Die Kohlenstoffnitride müssen den Vergleich mit konventionellen organischen Halbleitermaterialien nicht scheuen – im Gegenteil: mit ihrer Eigenschaft als quasi-eindimensionale Halbleiter könnten sich ganz neuartige voll-organische optoelektronische Bauelemente realisieren lassen“, hofft Merschjann, der sich im aktuellen DFG-geförderten Forschungsprojekt an der FU Berlin mit dem direkten Nachweis der Ladungsträger beschäftigt.

Die Kooperation wurde durch das BMBF-Cluster-Projekt „Light2Hydrogen“ initiiert. Die Ergebnisse sind in der renommierten Zeitschrift „Advanced Materials“ publiziert: „Complementing Graphenes: 1D Interplanar Charge Transport in Polymeric Graphitic Carbon Nitrides“

DOI: 10.1002/adma.201503448

Media Contact

Dr. Ina Helms Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Weitere Informationen:

http://www.helmholtz-berlin.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer