Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Indizien für ein exotisches Teilchen

20.06.2011
COSY-Beschleuniger: Hinweis auf Ursache des ABC-Effekts

Experimente am Jülicher Teilchenbeschleuniger COSY geben Hinweise auf ein neues komplexes Teilchen, das einen neuen Bindungszustand oder vielleicht sogar ein bisher nur theoretisch vorhergesagtes, exotisches Hadron darstellen könnte. Zusätzlich liefern die Messungen eine mögliche Erklärung für ein über 50 Jahre altes Rätsel - den nach den Physikern Alexander Abashian, Norman E. Booth und Kenneth M. Crowe benannten ABC-Effekt. Die Ergebnisse der Jülicher Protonenstrahl-Experimente - durchgeführt von der internationalen WASA-at-COSY Kollaboration mit mehr als 120 Wissenschaftlern aus sechs Ländern - wurden am 17. Juni 2011 in den "Physical Review Letters" (DOI: 10.1103/PhysRevLett.106.242302) veröffentlicht und schafften es sogar auf das Cover der Fachzeitschrift.

Bisher konnten Physiker nur zwei verschiedene Klassen von Kernbausteinen - genauer: Hadronen - beobachten: Mesonen und Baryonen. Mesonen sind flüchtige Teilchen, die sich aus zwei elementaren Bausteinen - einem Quark und einem Antiquark - zusammensetzen. Baryonen bestehen aus drei Quarks. Zu ihnen zählen unter anderem die Protonen und Neutronen, aus denen die Atomkerne aufgebaut sind. Viele Physiker gehen aber davon aus, dass zusätzlich noch weitere, komplexer aufgebaute Teilchen existieren: die "exotischen Hadronen". Das Standardmodell der Elementarteilchenphysik erlaubt neben den bekannten Baryonen und Mesonen nämlich noch verschiedene andere Arten von Hadronen, die beispielsweise als "Hybride", "Glueballs" oder "Multiquarks" bezeichnet werden. Bis jetzt ließ sich die Existenz solcher exotischer Hadronen allerdings nie eindeutig nachweisen. Die Messungen am Jülicher COSY-Beschleuniger könnten einen wichtigen Beitrag leisten, um diese Lücke zu schließen. Die Experimente weisen auf eine neue Struktur hin, die insgesamt sechs Quarks umfasst. Dabei könnte es sich um ein exotisches, kompaktes Teilchen handeln oder auch um ein "hadronisches Molekül", das - ähnlich wie ein gewohntes Molekül, nur in kleineren Dimensionen - aus mehreren kleinen Kernbausteinen aufgebaut ist, vielleicht sogar ganz ähnlich wie ein Atomkern. Sollten sich die Ergebnisse bestätigen, müsste dem Particle Data Booklet, der "Bibel der Experimentalteilchenphysiker", ein neuer Eintrag hinzugefügt werden.

Die beobachtete Struktur ist extrem kurzlebig und ließ sich nur indirekt über ihre Zerfallsprodukte nachweisen. Der schnell vergängliche Zwischenzustand - Fachbegriff: Resonanz - existiert nur für die Dauer einer Hunderttrilliardstel (10^-23) Sekunde. Diese Zeitspanne ist so kurz, dass Licht darin gerade einmal einen kleinen Atomkern durchlaufen könnte. "Die neuartige Resonanzstruktur, die wir beobachtet haben, lässt den ABC-Effekt in einem völlig neuen Licht erscheinen", berichtet der Sprecher der Arbeitsgruppe, Prof. Heinz Clement von der Universität Tübingen. Die Physiker Alexander Abashian, Norman E. Booth und Kenneth M. Crowe hatten 1960 erstmals das mysteriöse Phänomen beschrieben. Es bezeichnet eine unerklärliche Abweichung bei Fusionsexperimenten mit leichten Atomkernen - das Auftreten unerwartet vieler neutraler Pi-Meson-Paare mit kleiner Energie. Seitdem suchen Forscher nach der Ursache für den ABC-Effekt, und der neuartige Zustand wäre wegen seiner Zerfallseigenschaften ein passender Kandidat.

In den Experimenten am Jülicher Teilchenbeschleuniger untersuchten die Wissenschaftler die Kollision von Protonen und Neutronen, bei der die beiden Teilchen zu einem Deuteron verschmolzen und zusätzlich zwei neutrale Pi-Mesonen - kurz: Pionen - entstanden. Erst die Kombination aus COSY-Beschleuniger und WASA-Detektor, der 2005/2006 aus dem schwedischen Uppsala nach Jülich verlegt worden war, ermöglichte die extrem genauen Messungen. "In unseren Experimenten konnten wir die Reaktion erstmals über den gesamten Energiebereich mit einer bisher unerreichten Präzision untersuchen", erzählt Prof. Hans Ströher vom Institut für Kernphysik des Forschungszentrums Jülich. Mit dem besonders gleichmäßigen, durch mehrere Korrekturverfahren "gekühlten" Protonenstrahl am COSY (COoler SYnchrotron) ließ sich die Impulsverteilung jedes einzelnen Zusammenstoßes sehr genau bestimmen. Der angeschlossene, fünf Meter lange WASA-Detektor spürte anschließend die entstandenen ungeladenen Teilchen auf - in diesem Fall neutrale Pionen, die in zwei Photonen (Lichtquanten) zerfallen. Die Genauigkeit der Messwerte spielte eine entscheidende Rolle. Sie erlaubte Rückschlüsse auf spezielle Eigenschaften der Resonanz, die sich alle gemeinsam - trotz aller Bemühungen der Theoretiker - nicht mehr konventionell erklären ließen, so dass die beteiligten Forscher von der Entdeckung eines neuartigen Bindungszustands ausgehen.

Zum weiteren Nachweis der exotischen Resonanz ist bereits eine Fortsetzung der Experimente geplant. Bisher zeigte sich diese Struktur nur in Kollisionen, bei denen Protonen und Neutronen miteinander zu Deuteron fusionieren. Mit einem verbesserten Versuchsaufbau wollen die Wissenschaftler im kommenden Jahr testen, ob sich die exotische Resonanz wie erwartet auch bei elastischen Stößen ohne anschließende Fusionsreaktion und Pion-Produktion nachweisen lässt. Die Auswertung wird allerdings noch einige Zeit in Anspruch nehmen. Die ersten Ergebnisse liegen voraussichtlich 2013 vor.

Originalveröffentlichung:
Abashian-Booth-Crowe Effect in Basic Double-Pionic Fusion: A New Resonance? P. Adlarson et al., Physical Review Letters 106, 242302 (2011) (Issue 24, 17-June-2011);
DOI: 10.1103/PhysRevLett.106.242302
Direkter Link zum Artikel: http://link.aps.org/doi/10.1103/PhysRevLett.106.242302
Fotos zum Download:
http://www.fz-juelich.de/portal/DE/Home/home_node.html
Weitere Informationen:
Cosy-Beschleuniger, Institut für Kernphysik, Forschungszentrum Jülich
http://www.fz-juelich.de/ikp/DE/Forschung/Beschleuniger/_doc/COSY.html?nn=497786
WASA-at-COSY, Forschungszentrum Jülich
http://www2.fz-juelich.de/ikp/wasa/
Ansprechpartner:
Sprecher des Experiments:
Prof. Heinz Clement (Physikalisches Institut, Universität Tübingen)
Tel.: 07071 29-76352
clement@pit.physik.uni-tuebingen.de
Jülicher Ansprechpartner:
Prof. Jim Ritman, Prof. Hans Ströher (Institut für Kernphysik, Forschungszentrum Jülich)
Tel.: 02461 61-3091, -3093
j.ritman@fz-juelich.de, h.stroeher@fz-juelich.de
Pressekontakt:
Tobias Schlößer,
Tel.: 02461 61-4771,
t.schloesser@fz-juelich.de

Annette Stettien | Forschungszentrum Juelich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle
07.12.2016 | Goethe-Universität Frankfurt am Main

nachricht Das Universum enthält weniger Materie als gedacht
07.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie