Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue hochauflösende Methoden in der Fluoreszenzmikroskopie

03.03.2011
Heidelberger Wissenschaftler nutzen lichtunabhängigen Prozess mit chemisch schaltbarer Sonde

Mit Hilfe chemischer Verfahren können physikalische Beschränkungen in der hochauflösenden Lichtmikroskopie umgangen werden. Forscher des Physikalisch-Chemischen Instituts und des Exzellenzclusters „CellNetworks“ der Universität Heidelberg haben eine neue Methode entwickelt, bei der anstelle von lichtabhängigen Prozessen chemische Reaktionen zum Einsatz kommen, um zelluläre Strukturen für hochauflösende lichtmikroskopische Untersuchungen zu markieren. Diese Methode ermöglicht neue Anwendungsgebiete für die Fluoreszenzmikroskopie. Die Ergebnisse wurden online in der Zeitschrift „Angewandte Chemie International Edition“ veröffentlicht.



Das Fluoreszenzsignal von zwei Proben kann sich überlagern und unter die Beugungsgrenze fallen. Durch die Möglichkeit, einzelne Sonden abzubilden, kann man die Position sehr viel genauer rekonstruieren.

Die Fluoreszenzmikroskopie ist eine weit verbreitete Methode, um Zellbestandteile zu untersuchen. Allerdings verhindert die sogenannte Beugungsgrenze detaillierte Einblicke in zelluläre Strukturen: Danach lassen sich Objekte, die weniger als 0,3 Mikrometer voneinander entfernt liegen, nicht mehr getrennt voneinander abbilden. Um diese Grenze zu umgehen, wurden neue Methoden entwickelt, zu denen beispielsweise die Stochastische Optische Rekonstruktionsmikroskopie (STORM) zählt. Dabei werden Zellstrukturen mit fluoreszierenden Farbstoffen markiert und durch Licht einer bestimmten Wellenlänge angeregt und sichtbar gemacht. Eine hohe Auflösung von ungefähr 0,02 Mikrometer wird erreicht, indem die Mehrzahl der Farbstoffe ausgeschaltet und nur eine geringe Anzahl angelassen wird, so dass das ausgesandte Licht benachbarter Farbstoffe nicht mehr überlagert abgebildet wird. Dieses Schalten der Farbstoffe wird ebenfalls durch Licht gesteuert. Die Position der angeschalteten Farbstoffe lässt sich über eine mathematische Analyse mit sehr hoher Präzision von ungefähr 0,003 Mikrometer bestimmen. Die mehrfache Wiederholung dieser Prozedur liefert exakte Informationen über den Aufenthaltsort aller Farbstoffe und lässt damit eine hochauflösende Rekonstruktion der untersuchten Zellstrukturen zu.

Diese Untersuchungsmethode stellt allerdings besondere Anforderungen an das Mikroskop und die eingesetzten Lichtquellen: Um die jeweiligen Farbstoffe zu schalten, werden entweder unterschiedliche Laserlinien oder hohe Lichtintensitäten oder auch beides zugleich benötigt, was bei der Untersuchung lebender Zellen problematisch werden kann. Das Team um den Heidelberger Chemiker Dr. Dirk-Peter Herten hat das Schalten von Farbstoffen mit Hilfe von Laserlicht durch einen lichtunabhängigen Prozess ersetzt. Dabei passten die Wissenschaftler eine chemische Sonde zum Nachweis von Kupferionen so an, dass diese Sonde mit ihren fluoreszierenden Eigenschaften zur Markierung von zellulären Strukturen genutzt werden kann. Bindet Kupfer(II) an diese Sonde, wird deren Fluoreszenz gelöscht. Diese Bindung des Kupfer(II)-Ions ist umkehrbar, wobei auch die Fluoreszenz der Sonde wiederhergestellt wird. Somit wird die mikroskopische Untersuchung der Zellstrukturen mit Hilfe einer umkehrbaren, das heißt reversiblen, chemischen Reaktion gesteuert.

Die Wissenschaftler haben die Methode CHIRON – chemically improved resolution for optical nanoscopy – genannt. Damit lassen sich laut Dr. Herten Mikroskopieverfahren wie STORM soweit vereinfachen, dass auf den Einsatz zusätzlicher Laserlinien und auf hohe Lichtintensitäten verzichtet werden kann. Stattdessen muss lediglich die Sonde in einer zellulären Umgebung vorliegen, der kleinste Mengen von Kupfersulfat zugegeben werden können, zum Beispiel fixierte Zellen. „Damit ergeben sich neue Anwendungsgebiete für die hochauflösende Mikroskopie, die vorher wegen technischer Beschränkungen unzugänglich waren, denn unsere Sonden lassen sich auf vielen Mikroskopen einsetzen“, erläutert Dr. Herten.

Informationen im Internet können unter der Adresse http://www.bioquant.uni-heidelberg.de/research/groups/single_molecule_spectroscopy.html abgerufen werden.

Originalveröffentlichung:
M. Schwering, A. Kiel, A. Kurz, K. Lymperopoulos, A. Sprödefeld, R. Krämer, D.-P. Herten: Far-Field Nanoscopy with Reversible Chemical Reactions / Hochauflösende Mikroskopie mit reversiblen chemischen Reaktionen. Angewandte Chemie International Edition, 15. Februar 2011, doi: 10.1002/anie.201006013
Kontakt:
Dr. Dirk-Peter Herten
Exzellenzcluster CellNetworks
Physikalisch-Chemisches Institut
Telefon (06221) 54-51220
dirk-peter.herten@urz.uni-hd.de
Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de
http://www.bioquant.uni-heidelberg.de/research/groups/single_molecule_spectroscopy.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bestrahlung bei Hirntumoren? Eine neue, verlässlichere Einteilung erleichtert die Entscheidung

26.04.2017 | Medizin Gesundheit

Nose2Brain – Effizientere Therapie von Multipler Sklerose

26.04.2017 | Biowissenschaften Chemie

Bauübergabe der ALMA-Residencia

26.04.2017 | Architektur Bauwesen