Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Erkenntnisse zur kosmischen Strahlung

22.09.2014

Die neuesten Ergebnisse der Messung hochenergetischer Teilchen mit dem Detektor AMS auf der Internationalen Raumstation ISS vertiefen das Verständnis des Ursprungs und der Natur der kosmischen Strahlung.

An dem Experiment ist eine Nachwuchsgruppe des Karlsruher Instituts für Technologie (KIT) unter Leitung von Dr. Iris Gebauer maßgeblich beteiligt: Sie wirkte federführend bei der Messung des Gesamtflusses von Elektronen und Positronen mit. Der Sprecher des AMS-Projekts, Professor Samuel C. C. Ting, stellte die Ergebnisse nun am Forschungszentrum CERN vor.Energiereiche Teilchen, welche die Erde erreichen, liefern wichtige Informationen über das Universum. Um die ursprüngliche Zusammensetzung und Energie dieser Teilchen zu bestimmen, ist es erforderlich, sie mit einem Detektor außerhalb der Atmosphäre zu vermessen. Dies ist die Aufgabe des Teilchendetektors AMS (Alpha-Magnet-Spektrometer), der im Mai 2011 auf der Internationalen Raumstation ISS installiert wurde.


Der Detektor AMS (Alpha-Magnet-Spektrometer) auf der Internationalen Raumstation ISS. Mit diesem Teilchendetektor erforschen Wissenschaftler Ursprung und Natur der kosmischen Strahlung.

Foto: NASA

Entwickelt und gebaut wurde der Teilchendetektor von mehr als 500 Wissenschaftlerinnen und Wissenschaftlern aus 16 Ländern. Das AMS-Instrument verfügt über einen Spurdetektor, der von einem ringförmigen Permanentmagneten umgeben ist. Dieser Magnet zwingt die durchfliegenden geladenen Teilchen auf Kreisbahnen, aus deren Krümmung die Wissenschaftler die elektrische Ladung der Teilchen und ihre Energie bestimmen können.

Forscher des Instituts für Experimentelle Kernphysik (IEKP) des KIT wirkten unter Leitung von Professor Wim de Boer bei der Entwicklung und Konstruktion mehrerer Komponenten des Detektors AMS mit. Zur Analyse der Daten richtete das KIT 2011 die Young Investigator Group (YIG) „Cosmic Ray Transport Models for Dark Matter Searches with AMS-02“ unter der Leitung von Dr. Iris Gebauer ein. Die YIG hat die Messung des Gesamtflusses von Elektronen – negativ geladenen Elementarteilchen – und Positronen – Antiteilchen der Elektronen mit entgegengesetzter Ladung – federführend vorgenommen.

Die nun vom AMS-Projektsprecher Professor Samuel C. C. Ting vorgestellten Ergebnisse basieren auf rund 41 Milliarden Ereignissen, die mit dem Detektor AMS in den vergangenen drei Jahren aufgezeichnet wurden. Rund zehn Millionen davon wurden als Elektronen und Positronen identifiziert. Dabei hat der Detektor AMS den Positronen-Anteil, das heißt das Verhältnis der Anzahl gemessener Positronen zur Gesamtsumme der Positronen und Elektronen, im Energiebereich von 0.5 bis 500 Giga-Elektronenvolt (GeV) gemessen.

Ab einer Energie von acht GeV steigt dieser Anteil rasch an. Wie nun erstmals gezeigt, erreicht er bei etwa 275 GeV ein Maximum, jenseits davon fällt der Positronen-Anteil wieder ab. Dies deutet auf eine neue Quelle von Positronen hin. „Kollisionen von Teilchen der Dunklen Materie können einen Positronen-Überschuss erzeugen“, erklärt Dr. Iris Gebauer vom KIT: „Allerdings könnten die Positronen auch von astrophysikalischen Punktquellen kommen, beispielsweise von Pulsaren, das heißt schnell rotierenden Neutronensternen.“

Zudem nahmen die Forscher mit dem Teilchendetektor AMS präzise Messungen des Elektronen- und Positronen-Flusses vor, das heißt, sie ermittelten die Intensitäten der Elektronen und Positronen in der kosmischen Strahlung. Die Messungen zeigten erstmals quantitativ, wie sehr sich Elektronen und Positronen in der Energieabhängigkeit und in der Intensität des Flusses unterscheiden.

Im Bereich zwischen 20 und 200 GeV ergab sich überraschenderweise, dass die Änderungsrate des Positronen-Flusses höher ist als die Änderungsrate des Elektronen-Flusses. Damit wird klar, dass der Überschuss des Positronen-Anteils auf einen relativen Überschuss von hochenergetischen Positronen zurückzuführen ist – wie er von Pulsaren oder bei der Kollision Dunkler Materie zu erwarten ist –, und nicht auf den relativen Verlust beziehungsweise die relative Abnahme hochenergetischer Elektronen. Die Beobachtungen belegen den fundamentalen Unterschied zwischen Elektronen und Positronen, das heißt Materie und Antimaterie.

Die Messung des Summenflusses von Elektronen und Positronen mit dem Teilchendetektor AMS, welche die YIG von Dr. Iris Gebauer mit Beteiligung von Wissenschaftlern des Istituto Nazionale di Fisica Nucleare (INFN) in Perugia/Italien vornahm, gibt die Gesamtintensität beider Teilchenarten an. „Sie ist die bisher präziseste Messung des Elektronen- und Positronen-Flusses und bestimmt den Fluss der Strahlung bis zu Energien von 1000 GeV mit höchster Genauigkeit“, berichtet Gebauer. „Verglichen mit der Messung des Positronen-Flusses, bedeutet dies eine Verdopplung des Energiebereichs.“

Die Forscher können nun mit einem vier Meter großen Präzisionsdetektor im Weltall Energiebereiche vermessen, die auch mit riesigen Luftschauerexperimenten auf der Erdoberfläche zugänglich sind. Das stellt ein wichtiges Bindeglied zum Verständnis der kosmischen Strahlung und ihrer Quellen dar. „Frühere Experimente haben Strukturen im Bereich von 300 bis 800 GeV im Gesamtfluss entdeckt, die auf neue physikalische Effekte hingewiesen haben. Unsere Messung zeigt, dass der Gesamtfluss von Elektronen und Positronen bis zu Energien von 1000 GeV einen glatten Verlauf zeigt, der sich mit einer zusätzlichen Komponente energetischer Positronen erklären lässt“, erklärt die Nachwuchsgruppenleiterin.

Künftig sollen weitere Messungen mit dem Detektor AMS zeigen, ob der beobachtete Positronen-Überschuss tatsächlich auf die Existenz Dunkler Materie zurückzuführen ist oder aber von wenigen astrophysikalischen Punktquellen herrührt. Dazu messen die Wissenschaftler der YIG von Dr. Iris Gebauer die Richtungsabhängigkeit der hochenergetischen Positronen. „Dunkle Materie ist weit verteilt, eine Punktquelle befindet sich an einem bestimmten Ort“, erläutert Gebauer.

Die neuen Ergebnisse des AMS-Experiments wurden in der Fachzeitschrift Physical Review Letters (113, 121102 – 18. September 2014) veröffentlicht.

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Thematische Schwerpunkte der Forschung sind Energie, natürliche und gebaute Umwelt sowie Gesellschaft und Technik, von fundamentalen Fragen bis zur Anwendung. Mit rund 9 400 Mitarbeiterinnen und Mitarbeitern, darunter mehr als 6 000 in Wissenschaft und Lehre, sowie 24 500 Studierenden ist das KIT eine der größten Forschungs- und Lehreinrichtungen Europas. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

Monika Landgraf | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2017

23.02.2017 | Veranstaltungen

Wie werden wir gesund alt? - Alternsforscher tagen auf interdisziplinärem Symposium in Magdeburg

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Heinz Maier-Leibnitz-Preise 2017: DFG und BMBF zeichnen vier Forscherinnen und sechs Forscher aus

23.02.2017 | Förderungen Preise

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungsnachrichten

Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor

23.02.2017 | Physik Astronomie