Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Erkenntnisse über metallische Schmelzen: Was Einstein nicht ahnte

17.10.2014

Hart wie Keramik, leitfähig wie Metall, formbar wie Plastik: Metallische Gläser haben faszinierende Eigenschaften, die für die Industrie hochinteressant sind. Wie genau sie entstehen, ist aber noch weitgehend unbekannt. Mit ihrer neuen Entdeckung sind Wissenschaftler der Christian-Albrechts-Universität zu Kiel (CAU) nun nahe dran, das Geheimnis zu lüften, was passiert, wenn flüssige Metalllegierungen zu Glas erstarren. Damit erweitern sie eine über einhundert Jahre alte Theorie Albert Einsteins über Viskosität und Diffusion.

„Das Metall der Zukunft“ – damit werben Firmen für die extrem harten, elastischen und korrosionsbeständigen Metalllegierungen. Sie sind besonders in der Medizin, in der Raumfahrt und bei Sportausrüstung wie Golfschlägern gefragt. Die Herstellung dieser metallischen Gläser, die erstmals 1954 in Deutschland entdeckt wurden, ist jedoch sehr aufwendig und teuer, da umfassende wissenschaftliche Grundlagenerkenntnisse bisher fehlen – trotz zurzeit intensiver Erforschung.


Forschungsgegenstand Vitreloy 4: Kieler Wissenschaftlerinnen und Wissenschaftler haben neues Grundlagenwissen über metallische Schmelzen geschaffen.

Foto/Copyright: Elisabeth Gill

Insbesondere die Übergangsphase von der Schmelze bis zum Glas stellt die Forscherinnen und Forscher vor große Rätsel. In kristallinen Festkörpern ist jedes einzelne Atom wie in einem Käfig an seinem Ort gefangen, denn die Teilchen sind dicht und regelmäßig „gepackt“. Völlig anders verhalten sie sich hingegen in sogenannten einfachen Schmelzen.

Das sind Stoffe in der flüssigen Phase, die nur aus einem Element bestehen. In diesem Zustand haben die Atome mehr Platz (= mehr freies Volumen), um sich gleichzeitig zu bewegen. Dadurch stoßen sie auch aneinander und ändern fortwährend ihre Richtung. Albert Einstein beschrieb dieses Verhalten bereits 1905 in einer Gleichung: In einer einfachen Schmelze bestimmt demnach die Größe der Atome deren Geschwindigkeit. Bei etwa gleicher Atomgröße – so erkannte der Physiker – sollten sich alle Atome nahezu gleich schnell bewegen.

Überraschendes förderte jetzt ein Kieler Forschungsteam um Professor Franz Faupel und Professor Klaus Rätzke mit Kolleginnen und Kollegen vom Deutschen Zentrum für Luft- und Raumfahrt in Köln zu Tage: Mit Experimenten an Vitreloy 4 (Marke der Liquidmetal Technologies), einer Legierung aus Zirconium, Titan, Kupfer, Nickel und Beryllium – also einer komplexen Schmelze aus mehreren Elementen – wiesen sie nach, dass sich komplexe Schmelzen von glasbildenden Legierungen nicht wie einfache Schmelzen verhalten.

„Schon mehrere hundert Grad vor dem Einsetzen der Erstarrung stellten wir fest, dass sich unterschiedliche Atomspezies unterschiedlich schnell bewegten“, erklärt Faupel die Untersuchungsergebnisse, „Und dass, obwohl die verschiedenen Atome fast gleich groß sind.“ Die Forschenden hatten zuvor Zirkon- und Cobalt-Atome radioaktiv markiert und beobachteten, dass die Zirkon-Atome bis zu viermal langsamer durch die Schmelze schleichen als die restlichen Atome. „Sie bewegen sich nicht frei, sondern spüren sogar oberhalb der Glasübergangstemperatur das Energiepotential anderer Zirkon-Atome und formen zeitweilig sogar Bindungen mit ihren Nachbarn“, führt Faupel weiter aus.

Diese Erkenntnisse, jüngst erschienen in der renommierten Fachzeitschrift „Physical Review Letters“, bestätigen nicht nur jüngste Theorien in diesem Forschungsfeld, welche davon ausgehen, dass die Glasbildung durch das Einfrieren der Bewegung bei bestimmten Temperaturen bedingt ist. Sondern sie könnten auch dazu führen, dass metallische Gläser zukünftig günstiger und gezielter hergestellt werden können.

Originalpublikation
Decoupling of Component Diffusion in a Glass-Forming Zr46.75Ti8.25Cu7.5Ni10Be27.5 Melt Far above the Liquidus Temperature
Sri Wahyuni Basuki, Alexander Bartsch, Fan Yang, Klaus Rätzke, Andreas Meyer and Franz Faupel. PhysRevLett.113.165901 (DOI: 10.1103)
Link zum Online-Artikel: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.165901

Fotos und Abbildungen stehen zum Download zur Verfügung:
http://www.uni-kiel.de/download/pm/2014/2014-321-1.jpg
Bildunterschrift: Die Doktorandin Sri Wahyuni Basuki im Labor vor der Diffusionsapparatur für die hier vorgestellten Experimente.
Foto/Copyright: AG Materialverbunde Uni Kiel

http://www.uni-kiel.de/download/pm/2014/2014-321-2.jpg
Bildunterschrift: Diffusionsmechanismen im Festkörper, der komplexen Schmelze und der einfachen Schmelze
Copyright: AG Materialverbunde Uni Kiel

http://www.uni-kiel.de/download/pm/2014/2014-321-3.jpg
Bildunterschrift: Forschungsgegenstand Vitreloy 4: Kieler Wissenschaftlerinnen und Wissenschaftler haben neues Grundlagenwissen über metallische Schmelzen geschaffen.
Foto/Copyright: Elisabeth Gill

Kontakt
Prof. Dr. Franz Faupel
Universität Kiel
Institut für Materialwissenschaft
Tel.: 0431/880 6225
E-Mail: ff@tf.uni-kiel.de

Prof. Dr. Klaus Rätzke
Universität Kiel
Institut für Materialwissenschaft
Tel.: 0431/880 6227
E-Mail: kr@tf.uni-kiel.de

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften