Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Erkenntnisse über metallische Schmelzen: Was Einstein nicht ahnte

17.10.2014

Hart wie Keramik, leitfähig wie Metall, formbar wie Plastik: Metallische Gläser haben faszinierende Eigenschaften, die für die Industrie hochinteressant sind. Wie genau sie entstehen, ist aber noch weitgehend unbekannt. Mit ihrer neuen Entdeckung sind Wissenschaftler der Christian-Albrechts-Universität zu Kiel (CAU) nun nahe dran, das Geheimnis zu lüften, was passiert, wenn flüssige Metalllegierungen zu Glas erstarren. Damit erweitern sie eine über einhundert Jahre alte Theorie Albert Einsteins über Viskosität und Diffusion.

„Das Metall der Zukunft“ – damit werben Firmen für die extrem harten, elastischen und korrosionsbeständigen Metalllegierungen. Sie sind besonders in der Medizin, in der Raumfahrt und bei Sportausrüstung wie Golfschlägern gefragt. Die Herstellung dieser metallischen Gläser, die erstmals 1954 in Deutschland entdeckt wurden, ist jedoch sehr aufwendig und teuer, da umfassende wissenschaftliche Grundlagenerkenntnisse bisher fehlen – trotz zurzeit intensiver Erforschung.


Forschungsgegenstand Vitreloy 4: Kieler Wissenschaftlerinnen und Wissenschaftler haben neues Grundlagenwissen über metallische Schmelzen geschaffen.

Foto/Copyright: Elisabeth Gill

Insbesondere die Übergangsphase von der Schmelze bis zum Glas stellt die Forscherinnen und Forscher vor große Rätsel. In kristallinen Festkörpern ist jedes einzelne Atom wie in einem Käfig an seinem Ort gefangen, denn die Teilchen sind dicht und regelmäßig „gepackt“. Völlig anders verhalten sie sich hingegen in sogenannten einfachen Schmelzen.

Das sind Stoffe in der flüssigen Phase, die nur aus einem Element bestehen. In diesem Zustand haben die Atome mehr Platz (= mehr freies Volumen), um sich gleichzeitig zu bewegen. Dadurch stoßen sie auch aneinander und ändern fortwährend ihre Richtung. Albert Einstein beschrieb dieses Verhalten bereits 1905 in einer Gleichung: In einer einfachen Schmelze bestimmt demnach die Größe der Atome deren Geschwindigkeit. Bei etwa gleicher Atomgröße – so erkannte der Physiker – sollten sich alle Atome nahezu gleich schnell bewegen.

Überraschendes förderte jetzt ein Kieler Forschungsteam um Professor Franz Faupel und Professor Klaus Rätzke mit Kolleginnen und Kollegen vom Deutschen Zentrum für Luft- und Raumfahrt in Köln zu Tage: Mit Experimenten an Vitreloy 4 (Marke der Liquidmetal Technologies), einer Legierung aus Zirconium, Titan, Kupfer, Nickel und Beryllium – also einer komplexen Schmelze aus mehreren Elementen – wiesen sie nach, dass sich komplexe Schmelzen von glasbildenden Legierungen nicht wie einfache Schmelzen verhalten.

„Schon mehrere hundert Grad vor dem Einsetzen der Erstarrung stellten wir fest, dass sich unterschiedliche Atomspezies unterschiedlich schnell bewegten“, erklärt Faupel die Untersuchungsergebnisse, „Und dass, obwohl die verschiedenen Atome fast gleich groß sind.“ Die Forschenden hatten zuvor Zirkon- und Cobalt-Atome radioaktiv markiert und beobachteten, dass die Zirkon-Atome bis zu viermal langsamer durch die Schmelze schleichen als die restlichen Atome. „Sie bewegen sich nicht frei, sondern spüren sogar oberhalb der Glasübergangstemperatur das Energiepotential anderer Zirkon-Atome und formen zeitweilig sogar Bindungen mit ihren Nachbarn“, führt Faupel weiter aus.

Diese Erkenntnisse, jüngst erschienen in der renommierten Fachzeitschrift „Physical Review Letters“, bestätigen nicht nur jüngste Theorien in diesem Forschungsfeld, welche davon ausgehen, dass die Glasbildung durch das Einfrieren der Bewegung bei bestimmten Temperaturen bedingt ist. Sondern sie könnten auch dazu führen, dass metallische Gläser zukünftig günstiger und gezielter hergestellt werden können.

Originalpublikation
Decoupling of Component Diffusion in a Glass-Forming Zr46.75Ti8.25Cu7.5Ni10Be27.5 Melt Far above the Liquidus Temperature
Sri Wahyuni Basuki, Alexander Bartsch, Fan Yang, Klaus Rätzke, Andreas Meyer and Franz Faupel. PhysRevLett.113.165901 (DOI: 10.1103)
Link zum Online-Artikel: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.165901

Fotos und Abbildungen stehen zum Download zur Verfügung:
http://www.uni-kiel.de/download/pm/2014/2014-321-1.jpg
Bildunterschrift: Die Doktorandin Sri Wahyuni Basuki im Labor vor der Diffusionsapparatur für die hier vorgestellten Experimente.
Foto/Copyright: AG Materialverbunde Uni Kiel

http://www.uni-kiel.de/download/pm/2014/2014-321-2.jpg
Bildunterschrift: Diffusionsmechanismen im Festkörper, der komplexen Schmelze und der einfachen Schmelze
Copyright: AG Materialverbunde Uni Kiel

http://www.uni-kiel.de/download/pm/2014/2014-321-3.jpg
Bildunterschrift: Forschungsgegenstand Vitreloy 4: Kieler Wissenschaftlerinnen und Wissenschaftler haben neues Grundlagenwissen über metallische Schmelzen geschaffen.
Foto/Copyright: Elisabeth Gill

Kontakt
Prof. Dr. Franz Faupel
Universität Kiel
Institut für Materialwissenschaft
Tel.: 0431/880 6225
E-Mail: ff@tf.uni-kiel.de

Prof. Dr. Klaus Rätzke
Universität Kiel
Institut für Materialwissenschaft
Tel.: 0431/880 6227
E-Mail: kr@tf.uni-kiel.de

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht ESO-Teleskope beobachten erstes Licht einer Gravitationswellen-Quelle
16.10.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Kalte Moleküle auf Kollisionskurs
13.10.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Kalte Moleküle auf Kollisionskurs

Mit einer neuen Kühlmethode gelingt Wissenschaftlern am MPQ die Beobachtung von Stößen in einem dichten Strahl aus kalten und langsamen dipolaren Molekülen.

Wie verlaufen chemische Reaktionen bei extrem tiefen Temperaturen? Um diese Frage zu beantworten, benötigt man molekulare Proben, die gleichzeitig kalt, dicht...

Im Focus: Astronomen entdecken ungewöhnliche spindelförmige Galaxien

Galaxien als majestätische, rotierende Sternscheiben? Nicht bei den spindelförmigen Galaxien, die von Athanasia Tsatsi (Max-Planck-Institut für Astronomie) und ihren Kollegen untersucht wurden. Mit Hilfe der CALIFA-Umfrage fanden die Astronomen heraus, dass diese schlanken Galaxien, die sich um ihre Längsachse drehen, weitaus häufiger sind als bisher angenommen. Mit den neuen Daten konnten die Astronomen außerdem ein Modell dafür entwickeln, wie die spindelförmigen Galaxien aus einer speziellen Art von Verschmelzung zweier Spiralgalaxien entstehen. Die Ergebnisse wurden in der Zeitschrift Astronomy & Astrophysics veröffentlicht.

Wenn die meisten Menschen an Galaxien denken, dürften sie an majestätische Spiralgalaxien wie die unserer Heimatgalaxie denken, der Milchstraße: Milliarden von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

bionection 2017 erstmals in Thüringen: Biotech-Spitzenforschung trifft in Jena auf Weltmarktführer

13.10.2017 | Veranstaltungen

Tagung „Energieeffiziente Abluftreinigung“ zeigt, wie man durch Luftreinhaltemaßnahmen profitieren kann

13.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

ESO-Teleskope beobachten erstes Licht einer Gravitationswellen-Quelle

16.10.2017 | Physik Astronomie

Was läuft schief beim Noonan-Syndrom? – Grundlagen der neuronalen Fehlfunktion entdeckt

16.10.2017 | Biowissenschaften Chemie

Gewebe mit Hilfe von Stammzellen regenerieren

16.10.2017 | Förderungen Preise