Neue Ergebnisse in der Quantenphysik: Zugang zur Quantentechnologie wird einfacher

Graphische Darstellung von fern-hergestellten Quantenzuständen unterschiedlicher Qualität. Im Experiment konnte gezeigt werden, dass es möglich ist, mithilfe des so genannten Quanten-Discords Quantenzustände zu präparieren (außerhalb des Kreises), die nicht immer mithilfe von Verschränkung (innerhalb des Kreises) hergestellt werden können. Foto: Universität Wien<br>

Sie haben gezeigt, dass für essenzielle Operationen in der Quanteninformationsverarbeitung weniger empfindliche Ressourcen verwendet werden können. In einem in „Nature Physics“ publizierten Experiment demonstrieren die WissenschafterInnen, dass die für zukunftsträchtige Quantentechnologien wesentliche Fern-Herstellung von Quantenzuständen auch ohne Verschränkung möglich ist.

„Die von uns gezeigten Quanteneffekte können zur Entwicklung verbesserter Informations- oder Computersysteme beitragen“, so der Quantenphysiker der Universität Wien Philip Walther. Eine wesentliche Eigenschaft in der Quantenphysik ist, dass zwei oder mehrere Quantenteilchen stärker als klassisch möglich miteinander verbunden, d.h. korreliert, sein können – wie im Falle von Verschränkung.

Bereits Erwin Schrödinger – einer der Gründer der heutigen Quantentheorie und österreichischer Nobelpreisträger – hat erkannt, dass die Beeinflussung eines Teilchens durch eine Messung von außen auch den Zustand des mit ihm verschränkten Teilchens verändert. Dabei ist es irrelevant, wie weit die beiden verschränkten Teilchen voneinander entfernt sind. Dies ermöglicht die gezielte Fern-Herstellung von Quantenzuständen und dient einer Reihe von Anwendungen wie der Quantenkommunikation, Quantenkryptographie und der Quantencomputer.

Quanten-Discord als Ressource

Üblicherweise wird der Grad der Verschränkung zweier Teilchen gleich gesetzt mit der unmittelbaren Nützlichkeit für quantentechnologische Anwendungen. Stark verschränkte Systeme reagieren sehr sensibel auf äußere Einflüsse und sind schwer herzustellen. Forschungsteams um die Quantenphysiker der Universität Wien Caslav Brukner und Philip Walther haben gezeigt, dass für eine erfolgreiche Fern-Herstellung eines Quantenzustandes nicht Verschränkung, sondern eine andere robustere Korreliertheit, der so genannte Quanten-Discord, als Ressource ausreicht. Dieses noch weitgehend unverstandene Maß gibt an, wie stark ein System gestört wird, wenn ein Beobachter seine Eigenschaften misst.

Fern-Herstellung von Quantenzuständen

Mit Hilfe von quantenmechanisch präparierten Photonenpaaren haben die ForscherInnen die Fern-Herstellung von Quantenzuständen untersucht. „Durch die Messung des Polarisationszustandes eines Photons können wir den Zustand des dazugehörigen Partnerphotons fern-herstellen“, erklärt Philip Walther. „Im Experiment haben wir beobachtet, wie sich das Variieren des Quanten-Discords auf die Qualität unseres fern-hergestellten Zustands auswirkt.“ Dabei konnte das Forschungsteam demonstrieren, dass die Fern-Herstellung von Quantenzuständen sogar ohne Verschränkung möglich ist, sofern im System Quanten-Discord vorliegt. Diese Erkenntnis ist für die Entwicklung von zukünftigen Quantentechnologien vielversprechend: In Zukunft könnten nicht verschränkte robustere Quantensysteme als Ressource herangezogen werden, was den Zugang zur Quantentechnik erheblich erleichtern würde.

Das Projekt ist eine Kollaboration von ForscherInnen der Fakultät für Physik der Universität Wien, des Vienna Center for Quantum Science and Technology (VCQ), des Instituts für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften, des Centre for Quantum Technologies of the National University of Singapore, und der University of Oxford.

Publikation:
„Quantum discord as resource for remote state preparation“: Borivoje Dakic, Yannick-Ole Lipp, Xiaosong Ma, Martin Ringbauer, Sebastian Kropatschek, Stefanie Barz, Tomasz Paterek, Vlatko Vedral, Anton Zeilinger, Caslav Brukner, Philip Walther
(Nature Physics 2012)
DOI: 10.1038/NPHYS2377
Wissenschaftlicher Kontakt:
Ass. Prof. Philip Walther
Quantum Optics, Quantum Nanophysics, Quantum Information
Fakultät für Physik
Universität Wien
Boltzmanngasse 5, 1090 Wien, Austria
Tel.: +43-664-602 77-725 60
philip.walther@univie.ac.at
Rückfragehinweis
Mag. Petra Schiefer
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 33
petra.schiefer@univie.ac.at

Media Contact

Veronika Schallhart Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer