Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Emmy Noether-Nachwuchsgruppe untersucht Beitrag von W-Bosonen zum Aufbau der Materie

14.08.2012
Matthias Schott wird mit Unterstützung der DFG eine eigene Arbeitsgruppe zur Präzisionsmessung der Masse von W-Bosonen einrichten

Der Teilchenphysiker Dr. Matthias Schott wird an der Johannes Gutenberg-Universität Mainz (JGU) eine Emmy Noether-Nachwuchsgruppe aufbauen, die sich mit der hochpräzisen Messung der Masse von W-Bosonen, fundamentaler Bausteine unserer Materie, befasst. Die neue Forschungsgruppe wird von der Deutschen Forschungsgemeinschaft (DFG) in den kommenden Jahren finanziell gefördert.

Die Gruppe ist der Experimentellen Teilchen- und Astroteilchenphysik (ETAP) an der JGU angegliedert, die Untersuchungen selbst werden am LHC am Genfer CERN durchgeführt. „Die Präzisionsmessungen werden dazu beitragen, den Aufbau der Materie besser zu verstehen“, erwartet Matthias Schott. Dies ist auch vor dem Hintergrund der kürzlich bekanntgegebenen Entdeckung des Higgs-Bosons am CERN von besonderer Bedeutung.

Das Standardmodell der Teilchenphysik ist die erfolgreichste Theorie zur Beschreibung der fundamentalen Bausteine der bekannten Materie und ihrer Wechselwirkungen. Trotz des unglaublichen Erfolgs dieser Theorie in den vergangenen Jahrzehnten sind einige entscheidende Fragen noch nicht beantwortet. Teilchenphysiker auf der ganzen Welt versuchen zu erklären, wie die Bausteine der Natur ihre Masse erhalten. „Die genaue Messung der Masse von drei unserer fundamentalen Bausteine, dem W-Boson, dem Top-Quark und dem Anfang Juli entdeckten Higgs-Boson, wird eine endgültige Antwort geben können“, so Schott.

W-Bosonen sind elektrisch geladene Elementarteilchen, die zwischen anderen Elementarteilchen im Atomkern die schwache Wechselwirkung vermitteln. Ihre Masse ist ungefähr 80 Mal so groß wie die eines Protons, W-Bosonen sind also relativ schwer. Sie können an Teilchenbeschleunigern wie dem LHC erzeugt werden, zerfallen allerdings sehr schnell wieder. Ziel der neuen Nachwuchsgruppe ist die Massebestimmung des W-Bosons mit einer bisher unerreichten Genauigkeit. Die Messung basiert auf der Verwendung neu entwickelter computergestützter Methoden und großer Rechenzentren. Sie stellt eine der anspruchsvollsten Aufgaben in der heutigen Teilchenphysik dar, weil eine Vielzahl von experimentellen und theoretischen Aspekten berücksichtigt werden muss. Das Vorhaben soll mit Daten des ATLAS-Detektors am Large Hadron Collider (LHC) durchgeführt werden.

„Wir freuen uns sehr auf die Zusammenarbeit mit Herrn Schott, dessen Forschungsvorhaben unsere Arbeiten in der Teilchenphysik hervorragend ergänzen wird“, erklärt Univ.-Prof. Dr. Volker Büscher von der Arbeitsgruppe ETAP. An der JGU sind rund 50 Physiker mit Forschungen am CERN befasst und zwar insbesondere am ATLAS-Experiment, einem der zwei großen Experimente, die sich unter anderem die Suche nach dem Higgs-Teilchen und seinen zweifelsfreien Nachweis zur Aufgabe gemacht haben.

Die DFG möchte mit dem Emmy Noether-Programm jungen Forschern den Weg zur wissenschaftlichen Selbstständigkeit eröffnen, indem sie eine Nachwuchsgruppe leiten und sich dadurch die Befähigung zum Hochschullehrer aneignen. Die Gruppe wird in der Regel während fünf Jahren gefördert. Matthias Schott hat in den vergangenen Jahren als wissenschaftlicher Angestellter am CERN an der Produktion von elektroschwachen Eichbosonen am LHC geforscht und wird im Herbst 2012 in Mainz mit dem Aufbau seiner Arbeitsgruppe beginnen.

Weitere Informationen:
Univ.-Prof. Dr. rer. nat. Volker Büscher
Experimentelle Teilchen- und Astroteilchenphysik (ETAP)
Institut für Physik
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-20399
Fax +49 6131 39-25169
E-Mail: buescher@uni-mainz.de
http://www.etap.physik.uni-mainz.de/

Dr. Matthias Schott
Emmy Noether-Nachwuchsgruppe „Präzisionsmessung der W-Bosonmasse am LHC“
Experimentelle Teilchen- und Astroteilchenphysik (ETAP)
Institut für Physik
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +41 22 76 71779
http://mschott.web.cern.ch/mschott/

Petra Giegerich | idw
Weitere Informationen:
http://www.etap.physik.uni-mainz.de/
http://mschott.web.cern.ch/mschott/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten