Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Emmy Noether-Nachwuchsgruppe untersucht Beitrag von W-Bosonen zum Aufbau der Materie

14.08.2012
Matthias Schott wird mit Unterstützung der DFG eine eigene Arbeitsgruppe zur Präzisionsmessung der Masse von W-Bosonen einrichten

Der Teilchenphysiker Dr. Matthias Schott wird an der Johannes Gutenberg-Universität Mainz (JGU) eine Emmy Noether-Nachwuchsgruppe aufbauen, die sich mit der hochpräzisen Messung der Masse von W-Bosonen, fundamentaler Bausteine unserer Materie, befasst. Die neue Forschungsgruppe wird von der Deutschen Forschungsgemeinschaft (DFG) in den kommenden Jahren finanziell gefördert.

Die Gruppe ist der Experimentellen Teilchen- und Astroteilchenphysik (ETAP) an der JGU angegliedert, die Untersuchungen selbst werden am LHC am Genfer CERN durchgeführt. „Die Präzisionsmessungen werden dazu beitragen, den Aufbau der Materie besser zu verstehen“, erwartet Matthias Schott. Dies ist auch vor dem Hintergrund der kürzlich bekanntgegebenen Entdeckung des Higgs-Bosons am CERN von besonderer Bedeutung.

Das Standardmodell der Teilchenphysik ist die erfolgreichste Theorie zur Beschreibung der fundamentalen Bausteine der bekannten Materie und ihrer Wechselwirkungen. Trotz des unglaublichen Erfolgs dieser Theorie in den vergangenen Jahrzehnten sind einige entscheidende Fragen noch nicht beantwortet. Teilchenphysiker auf der ganzen Welt versuchen zu erklären, wie die Bausteine der Natur ihre Masse erhalten. „Die genaue Messung der Masse von drei unserer fundamentalen Bausteine, dem W-Boson, dem Top-Quark und dem Anfang Juli entdeckten Higgs-Boson, wird eine endgültige Antwort geben können“, so Schott.

W-Bosonen sind elektrisch geladene Elementarteilchen, die zwischen anderen Elementarteilchen im Atomkern die schwache Wechselwirkung vermitteln. Ihre Masse ist ungefähr 80 Mal so groß wie die eines Protons, W-Bosonen sind also relativ schwer. Sie können an Teilchenbeschleunigern wie dem LHC erzeugt werden, zerfallen allerdings sehr schnell wieder. Ziel der neuen Nachwuchsgruppe ist die Massebestimmung des W-Bosons mit einer bisher unerreichten Genauigkeit. Die Messung basiert auf der Verwendung neu entwickelter computergestützter Methoden und großer Rechenzentren. Sie stellt eine der anspruchsvollsten Aufgaben in der heutigen Teilchenphysik dar, weil eine Vielzahl von experimentellen und theoretischen Aspekten berücksichtigt werden muss. Das Vorhaben soll mit Daten des ATLAS-Detektors am Large Hadron Collider (LHC) durchgeführt werden.

„Wir freuen uns sehr auf die Zusammenarbeit mit Herrn Schott, dessen Forschungsvorhaben unsere Arbeiten in der Teilchenphysik hervorragend ergänzen wird“, erklärt Univ.-Prof. Dr. Volker Büscher von der Arbeitsgruppe ETAP. An der JGU sind rund 50 Physiker mit Forschungen am CERN befasst und zwar insbesondere am ATLAS-Experiment, einem der zwei großen Experimente, die sich unter anderem die Suche nach dem Higgs-Teilchen und seinen zweifelsfreien Nachweis zur Aufgabe gemacht haben.

Die DFG möchte mit dem Emmy Noether-Programm jungen Forschern den Weg zur wissenschaftlichen Selbstständigkeit eröffnen, indem sie eine Nachwuchsgruppe leiten und sich dadurch die Befähigung zum Hochschullehrer aneignen. Die Gruppe wird in der Regel während fünf Jahren gefördert. Matthias Schott hat in den vergangenen Jahren als wissenschaftlicher Angestellter am CERN an der Produktion von elektroschwachen Eichbosonen am LHC geforscht und wird im Herbst 2012 in Mainz mit dem Aufbau seiner Arbeitsgruppe beginnen.

Weitere Informationen:
Univ.-Prof. Dr. rer. nat. Volker Büscher
Experimentelle Teilchen- und Astroteilchenphysik (ETAP)
Institut für Physik
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-20399
Fax +49 6131 39-25169
E-Mail: buescher@uni-mainz.de
http://www.etap.physik.uni-mainz.de/

Dr. Matthias Schott
Emmy Noether-Nachwuchsgruppe „Präzisionsmessung der W-Bosonmasse am LHC“
Experimentelle Teilchen- und Astroteilchenphysik (ETAP)
Institut für Physik
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +41 22 76 71779
http://mschott.web.cern.ch/mschott/

Petra Giegerich | idw
Weitere Informationen:
http://www.etap.physik.uni-mainz.de/
http://mschott.web.cern.ch/mschott/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Highlight der Halbleiter-Forschung
20.02.2018 | Technische Universität Chemnitz

nachricht Beobachtung und Kontrolle ultraschneller Prozesse mit Attosekunden-Auflösung
20.02.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Highlight der Halbleiter-Forschung

20.02.2018 | Physik Astronomie

Wie verbessert man die Nahtqualität lasergeschweißter Textilien?

20.02.2018 | Materialwissenschaften

Der Bluthochdruckschalter in der Nebenniere

20.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics