Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Einblicke in die Welt der Quantenmaterialien

19.09.2014

An der Universität Innsbruck haben Physiker um Francesca Ferlaino in einem Experiment beobachtet, wie anisotrope Eigenschaften von Teilchen die Fermi-Fläche eines Quantengases deformieren. Die nun in der Fachzeitschrift Science veröffentlichte Arbeit legt den Grundstein für neue Untersuchungen darüber, wie die Geometrie der Wechselwirkung von Teilchen die Quanteneigenschaften von Materialien beeinflussen kann.

Das Verhalten eines Materials wird von dessen energetischer Struktur bestimmt. Ein wichtiges Konzept der Festkörperphysik zur Beschreibung der Energiezustände zum Beispiel der Elektronen eines Metalls stellt die nach dem italienischen Physiker Enrico Fermi benannte Fermi-Fläche dar.


Quantenphysikerin Francesca Ferlaino

Uni Innsbruck

Elektronen sind wie Quarks oder Neutrinos Fermionen und gehorchen dem Paulischen Ausschlussprinzip, wonach zwei Fermionen nicht gleichzeitig am gleichen Ort einen identischen Quantenzustand besetzen können. Für Elektronen und andere fermionische Teilchen mit isotropen – also richtungsunabhängigen – Wechselwirkungen ergibt sich eine Fermi-Fläche in der Form einer Kugel.

„Das ist in der Natur der Normalfall und bildet die Basis vieler physikalischer Phänomene“, sagt Francesca Ferlaino vom Institut für Experimentalphysik der Universität Innsbruck. „Ist die Wechselwirkung der Teilchen anisotrop – also von der Richtung des Zusammentreffens abhängig –, so verändert dies das physikalische Verhalten eines Systems vollständig. Die anisotrope Wechselwirkung deformiert die Fermi-Fläche zu einem Ellipsoid.“ Genau eine solche Deformation konnte die von Ferlaino geleitete experimentelle Arbeitsgruppe nun zum ersten Mal beobachten.

Simulation in ultrakaltem Quantengas

Die Quantenphysiker haben dazu ein Gas aus fermionischen Erbiumatomen in einer Falle aus Laserlicht gefangen und bis nahe an den absoluten Nullpunkt abgekühlt. Das Element Erbium besitzt einen stark magnetischen Charakter, der zu einem extrem dipolaren Verhalten führt. Die Wechselwirkung zwischen diesen Atomen ist daher richtungsabhängig. Wenn die Innsbrucker Physiker das ultrakalte Gas nach dem Abkühlen der Teilchen aus der Falle entlassen, können sie anschließend aus der Impulsverteilung der Teilchen auf die Form der Fermi-Fläche schließen.

„Erbiumatome verhalten sich ähnlich wie Magnete, ihre Wechselwirkung ist stark von der Richtung, in der die Teilchen aufeinander treffen, abhängig. Unser Experiment zeigt, dass die Form der Fermi-Fläche von der Geometrie der Wechselwirkung abhängt und nicht mehr kugelförmig ist“, erklärt der Erstautor der Studie, Kiyotaka Aikawa, das nur äußert schwierig zu beobachtende Phänomen. Ursache für die Deformation der Fermi-Fläche ist das Zusammenspiel der magnetischen Wechselwirkung und der Tatsache, dass Fermionen auf unterschiedliche Energieniveaus verteilt sein müssen.

Grundlegende Fragestellung

„Es geht hier um die sehr generelle Frage, wie die Geometrie der Wechselwirkung von Teilchen die Quanteneigenschaften eines Materials beeinflusst“, erklärt Francesca Ferlaino. An der Beantwortung dieser Frage sind heute Physiker vieler unterschiedlicher Fachgebiete interessiert, so zum Beispiel der Hochtemperatursupraleitung. Ultrakalte Quantengase können hier einmal mehr als Testfeld für die Simulation komplexer Szenarien dienen. „Für die Entwicklung neuer Quantenmaterialien ist ein besseres Verständnis dieser Eigenschaften notwendig“, betont Francesca Ferlaino. „Nur wenn wir verstehen, wie die Wechselwirkung der Teilchen das Material beeinflusst, können wir Aussagen über mögliche Eigenschaften neuer Materialien machen.“

Diese Arbeit wurde vom Österreichischen Wissenschaftsministerium, dem Österreichischen Wissenschaftsfonds FWF und der EU finanziell unterstützt. Seit Juli ist ERC- und START-Preisträgerin Francesca Ferlaino auch wissenschaftliche Direktorin am Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften.

Publikation: Observation of Fermi surface deformation in a dipolar quantum gas. K. Aikawa, S. Baier, A. Frisch, M. Mark, C. Ravensbergen, F. Ferlaino. Science 2014
DOI: 10.1126/science.1255259 arXiv:1405.2154 http://arxiv.org/abs/1405.2154

Rückfragehinweis:
Univ.-Prof. Dr. Francesca Ferlaino
Institut für Experimentalphysik
Universität Innsbruck
Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften
6020 Innsbruck, Austria
Tel.: +43 512507 -52440 (Lab.: -52441), (Secr.: -52449), (Fax: -2921)
E-Mail: francesca.ferlaino@uibk.ac.at
Web: http://www.ultracold.at

Dr. Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Telefon: +43 512 507 32022
Mobil: +43 676 872532022
E-Mail: christian.flatz@uibk.ac.at
Web: http://www.uibk.ac.at

Weitere Informationen:

http://dx.doi.org/10.1126/science.1255259 - Observation of Fermi surface deformation in a dipolar quantum gas. K. Aikawa, S. Baier, A. Frisch, M. Mark, C. Ravensbergen, F. Ferlaino. Science 2014
http://www.ultracold.at - Ultracold Atoms and Quantum Gases

Dr. Christian Flatz | Universität Innsbruck

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie sich Zellen gegen Salmonellen verteidigen

05.12.2016 | Biowissenschaften Chemie

Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen

05.12.2016 | Förderungen Preise

Höhere Energieeffizienz durch Brennhilfsmittel aus Porenkeramik

05.12.2016 | Energie und Elektrotechnik