Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue biophysikalische Forschungsergebnisse zur Wechselwirkung zwischen Membran und Proteinen

24.10.2012
Wie Proteine und Viruskapside – komplexe Proteinstrukturen, die das Erbgut von Viren umhüllen – sich in der Nähe einer schwingenden Zellmembran strukturieren, das simuliert Physiker Richard Matthews mit hoch entwickelten Computerberechnungen.
Matthews forscht als Lise-Meitner-Fellow in der Gruppe Computergestützte Physik der Universität Wien unter der Leitung von Christos Likos, Professor für Multiscale Computational Physics. Die Ergebnisse sind für das bessere Verständnis von biophysikalischen Vorgängen von Bedeutung und erscheinen in der aktuellen Ausgabe der Physical Review Letters.

"In unserer aktuellen Publikation stellen wir neue Ergebnisse einer computergestützten Untersuchung vor, die den Einfluss von Membranen auf wichtige biologischen Vorgänge darstellt", erklärt Richard Matthews, Lise-Meitner-Fellow an der Universität Wien und Erstautor der Studie. Gegenstand der Untersuchung ist die "Selbstassemblierung" – auch Selbstorganisation – winziger Partikel. Damit wird der Prozess einer Struktur- und Musterbildung, die ohne menschliche Einwirkung erfolgt, bezeichnet. Im konkreten Fall geht es um die Erforschung des Prozesses der Wechselwirkungen zwischen Membran und Proteinen, der die Bildung geordneter Strukturen in der Zelle beeinflusst.
In den vergangenen Jahren wurde viel zum Prozess der Selbstassemblierung geforscht. Es gibt beeindruckende Beispiele davon in der Natur, von winzigen Motoren (z.B. bei Flagellen) bis hin zu Virsukapsiden mit perfekten sphärischen Formen. Bisher war man in der Lage, einfache Modelle "selbstassemblierender" Objekte nachzubauen und erhielt so Einblick in deren wichtigsten, experimentell beobachtbaren Eigenschaften. In der Natur gehen solche Prozesse jedoch nicht isoliert vor sich, sondern stehen in Wechselwirkungen mit ihrer Umgebung. Das bedeutet oft bei der Selbstassemblierung, dass sie auf bzw. in der Nähe von einer Membran stattfindet, was bis dato bei dem Aufbau von einfachen Modellen nicht berücksichtigt wurde.

Hoch entwickelte Simulationsmethoden
Ziel der Forschung ist es, die allgemeinen Eigenschaften dieser faszinierenden Vorgänge zu erforschen und sie mit neuen Berechnungsmethoden zu beschreiben. Dazu ist es nötig, den gesamten Prozess am Computer zu modellieren. Aufgrund der Komplexität der Aufgabe sind zur Berechnung Hochleistungscomputer erforderlich. "In unserer Arbeit haben wir hoch entwickelte Simulationsmethoden angewendet und konnten so herausfinden, wie die Wechselwirkungen mit einer Membran die Selbstassemblierung beeinflussen", führt Biophysiker Richard Matthews aus. "Wir stellten fest, dass eine Membran die Selbstassemblierung fördert, und dass in unserem Modell Strukturen vorkommen, die der Natur sehr ähnlich sind."

Publikation:
Influence of Fluctuating Membranes on Self-Assembly of Patchy Colloids. Richard Matthews and Christos N. Likos. Physical Review Letters. Oktober 2012.
DOI: 10.1103/PhysRevLett.109.178302

Wissenschaftliche Kontakte:
Dr. Richard James Matthews
Computergestützte Physik
Universität Wien
1090 Wien, Sensengasse 8
T +43-(0)1-4277-73233
richard.matthews@univie.ac.at

Univ.-Prof. Dipl.-Ing. Dr. Christos N. Likos
Computergestützte Physik
Universität Wien
1090 Wien, Sensengasse 8
T +43-1-4277-732 30
T +43-1-4277-732 31
christos.likos@univie.ac.at

Rückfragehinweis:
Mag. Veronika Schallhart
Pressebüro der Universität Wien
Forschung und Lehre
Universität Wien
1010 Wien, Universitätsring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Alexandra Frey | Universität Wien
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Raumschrott im Fokus
20.05.2018 | Universität Bern

nachricht Countdown für Kilogramm, Kelvin und Co.
18.05.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

Tagung »Anlagenbau und -betrieb der Zukunft«

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Wie Immunzellen Bakterien mit Säure töten

18.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics