Neue Anwendungen für Graphen: Ultraschnelle Photodetektoren und Terahertz-Strahler

Photodetektoren auf Graphen-Basis können Lichtsignale oder auch elektrische Signale extrem schnell verarbeiten und weiterleiten. So führt die optische Anregung von Graphen in Pikosekunden (0,000 000 000 001 Sek) zur Entstehung eines Photostroms. Bisher fehlte eine entsprechend schnelle Methode, um Abläufe wie diese in Graphen nachweisen zu können. Professor Alexander Holleitner und Dr. Leonhard Prechtel am Walter Schottky Institut der Technischen Universität München (TUM) ist es nun gelungen, die zeitliche Dynamik des Photostroms messbar zu machen.

Graphen wirkt auf den ersten Blick eher schlicht: das Material besteht ausschließlich aus Kohlenstoffatomen, die in einem einschichtigen „Teppich“ angeordnet sind. Doch für Wissenschaftler ist unter anderem die extrem hohe Leitfähigkeit von Graphen besonders reizvoll. Diese Eigenschaft ist unter anderem hilfreich für die Entwicklung von Photodetektoren. Dabei handelt es sich um Bauteile, die Strahlung detektieren und in elektrische Signale umwandeln können.

Mit Hilfe des hoch leitfähigen Graphen arbeiten Wissenschaftler daran, ultraschnelle Photodetektoren zu konstruieren. Allerdings war es bisher nicht möglich, das optische und elektronische Verhalten von Graphen zeitaufgelöst zu bestimmen. Das heißt zu klären, wie lange es von der elektrischen Anregung des Graphen bis zur Generierung des entsprechenden Photostroms dauert.

Dieser Frage widmeten sich Alexander Holleitner und Leonhard Prechtel am Walter Schottky Institut der TU München, zugleich Mitglieder des Exzellenzclusters Nanosystems Initiative Munich (NIM). Die Physiker entwickelten zunächst eine Methode, mit der sie den durch Bestrahlung mit kurzen Laserpulsen entstehenden Photostrom in Graphen-Photodetektoren bis in den Pikosekundenbereich hinein untersuchen können. Damit können sie nun Pikosekunden-Pulse detektieren. (Zum Vergleich: Ein Lichtstrahl, unterwegs mit Lichtgeschwindigkeit, legt in drei Pikosekunden eine Strecke von einem Millimeter zurück.)

Kern der untersuchten Photodetektoren ist frei tragendes Graphen, das über metallische Kontakte elektronisch in Schaltkreise eingebunden ist. Die zeitliche Dynamik des Photostroms bestimmen die Physiker mit Hilfe von sogenannten koplanaren Streifenleitungen, die sie über ein spezielles zeitaufgelöstes Laser-Spektroskopie-Verfahren auswerten, die Pump-Probe Technik. Hierbei werden mit einem Laserpuls Elektronen im Graphen angeregt und die Dynamik dieses Prozesses mit einem zweiten Laser verfolgt. Auf diese Weise können die Physiker genau nachvollziehen, wie der Photostrom im Graphen erzeugt wird.

Die neue Methode ermöglichte den Wissenschaftlern zeitgleich noch eine weitere Beobachtung: Sie konnten belegen, dass Graphen nach optischer Anregung Strahlung im Terahertz (THz)-Bereich aussendet. Die Frequenz dieser Strahlung liegt zwischen dem Frequenzbereich von Infrarotlicht und Mikrowellenstrahlung. Als Besonderheit besitzt THz-Strahlung Eigenschaften beider angrenzender Bereiche: Sie lässt sich bündeln wie Licht, und durchdringt Materie ähnlich wie elektromagnetische Wellen. Dadurch eignet sie sich beispielsweise zur Materialprüfung, zum Durchleuchten von Paketen oder für medizinische Anwendungen.

Die Arbeit wurde unterstützt aus Mitteln der Deutschen Forschungsgemeinschaft, dem Exzellenzcluster Nanosystems Initiative Munich und des Center for NanoScience (CeNS). An der Publikation wirkten außerdem Physiker der Universität Regensburg, der Eidgenössisch Technischen Hochschule Zürich, der Rice University und der Shinshu University mit.

Originalpublikation:

Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene. Leonhard Prechtel, Li Song, Dieter Schuh, Pulickel Ajayan, Werner Wegscheider, Alexander W. Holleitner, Nature Communications, 31. Januar 2012

Links:
http://dx.doi.org/10.1038/ncomms1656
http://www.nature.com/ncomms/index.html
Kontakt:
Prof. Dr. Alexander W. Holleitner
Technische Universität München

Walter Schottky Institut – Zentrum für Nanotechnologie und Nanomaterialien

Am Coulombwall 4a, 85748 Garching, Germany
Tel.: +49 89 289 11575 – Fax: +49 89 289 11600

E-Mail: holleitner@wsi.tum.de – Internet: http://www.wsi.tum.de
Die Technische Universität München (TUM) ist mit rund 460 Professorinnen und Professoren, 9.000 Mitarbeiterinnen und Mitarbeitern und 31.000 Studierenden eine der führenden technischen Universitäten Europas. Ihre Schwerpunktfelder sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften, Medizin und Wirtschaftswissenschaften. Nach zahlreichen Auszeichnungen wurde sie 2006 vom Wissenschaftsrat und der Deutschen Forschungsgemeinschaft zur Exzellenzuniversität gewählt. Das weltweite Netzwerk der TUM umfasst auch eine Dependance mit einem Forschungscampus in Singapur. Die TUM ist dem Leitbild einer unternehmerischen Universität verpflichtet.

Media Contact

Dr. Andreas Battenberg Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer