Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Anwendungen für Graphen: Ultraschnelle Photodetektoren und Terahertz-Strahler

31.01.2012
Hauchdünn, stabiler als Stahl und vielseitig einsetzbar: das Material Graphen hat zahlreiche interessante Eigenschaften. So ist es derzeit der Star unter den elektrischen Leitern.

Photodetektoren auf Graphen-Basis können Lichtsignale oder auch elektrische Signale extrem schnell verarbeiten und weiterleiten. So führt die optische Anregung von Graphen in Pikosekunden (0,000 000 000 001 Sek) zur Entstehung eines Photostroms. Bisher fehlte eine entsprechend schnelle Methode, um Abläufe wie diese in Graphen nachweisen zu können. Professor Alexander Holleitner und Dr. Leonhard Prechtel am Walter Schottky Institut der Technischen Universität München (TUM) ist es nun gelungen, die zeitliche Dynamik des Photostroms messbar zu machen.

Graphen wirkt auf den ersten Blick eher schlicht: das Material besteht ausschließlich aus Kohlenstoffatomen, die in einem einschichtigen „Teppich“ angeordnet sind. Doch für Wissenschaftler ist unter anderem die extrem hohe Leitfähigkeit von Graphen besonders reizvoll. Diese Eigenschaft ist unter anderem hilfreich für die Entwicklung von Photodetektoren. Dabei handelt es sich um Bauteile, die Strahlung detektieren und in elektrische Signale umwandeln können.

Mit Hilfe des hoch leitfähigen Graphen arbeiten Wissenschaftler daran, ultraschnelle Photodetektoren zu konstruieren. Allerdings war es bisher nicht möglich, das optische und elektronische Verhalten von Graphen zeitaufgelöst zu bestimmen. Das heißt zu klären, wie lange es von der elektrischen Anregung des Graphen bis zur Generierung des entsprechenden Photostroms dauert.

Dieser Frage widmeten sich Alexander Holleitner und Leonhard Prechtel am Walter Schottky Institut der TU München, zugleich Mitglieder des Exzellenzclusters Nanosystems Initiative Munich (NIM). Die Physiker entwickelten zunächst eine Methode, mit der sie den durch Bestrahlung mit kurzen Laserpulsen entstehenden Photostrom in Graphen-Photodetektoren bis in den Pikosekundenbereich hinein untersuchen können. Damit können sie nun Pikosekunden-Pulse detektieren. (Zum Vergleich: Ein Lichtstrahl, unterwegs mit Lichtgeschwindigkeit, legt in drei Pikosekunden eine Strecke von einem Millimeter zurück.)

Kern der untersuchten Photodetektoren ist frei tragendes Graphen, das über metallische Kontakte elektronisch in Schaltkreise eingebunden ist. Die zeitliche Dynamik des Photostroms bestimmen die Physiker mit Hilfe von sogenannten koplanaren Streifenleitungen, die sie über ein spezielles zeitaufgelöstes Laser-Spektroskopie-Verfahren auswerten, die Pump-Probe Technik. Hierbei werden mit einem Laserpuls Elektronen im Graphen angeregt und die Dynamik dieses Prozesses mit einem zweiten Laser verfolgt. Auf diese Weise können die Physiker genau nachvollziehen, wie der Photostrom im Graphen erzeugt wird.

Die neue Methode ermöglichte den Wissenschaftlern zeitgleich noch eine weitere Beobachtung: Sie konnten belegen, dass Graphen nach optischer Anregung Strahlung im Terahertz (THz)-Bereich aussendet. Die Frequenz dieser Strahlung liegt zwischen dem Frequenzbereich von Infrarotlicht und Mikrowellenstrahlung. Als Besonderheit besitzt THz-Strahlung Eigenschaften beider angrenzender Bereiche: Sie lässt sich bündeln wie Licht, und durchdringt Materie ähnlich wie elektromagnetische Wellen. Dadurch eignet sie sich beispielsweise zur Materialprüfung, zum Durchleuchten von Paketen oder für medizinische Anwendungen.

Die Arbeit wurde unterstützt aus Mitteln der Deutschen Forschungsgemeinschaft, dem Exzellenzcluster Nanosystems Initiative Munich und des Center for NanoScience (CeNS). An der Publikation wirkten außerdem Physiker der Universität Regensburg, der Eidgenössisch Technischen Hochschule Zürich, der Rice University und der Shinshu University mit.

Originalpublikation:

Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene. Leonhard Prechtel, Li Song, Dieter Schuh, Pulickel Ajayan, Werner Wegscheider, Alexander W. Holleitner, Nature Communications, 31. Januar 2012

Links:
http://dx.doi.org/10.1038/ncomms1656
http://www.nature.com/ncomms/index.html
Kontakt:
Prof. Dr. Alexander W. Holleitner
Technische Universität München

Walter Schottky Institut – Zentrum für Nanotechnologie und Nanomaterialien

Am Coulombwall 4a, 85748 Garching, Germany
Tel.: +49 89 289 11575 – Fax: +49 89 289 11600

E-Mail: holleitner@wsi.tum.de – Internet: http://www.wsi.tum.de
Die Technische Universität München (TUM) ist mit rund 460 Professorinnen und Professoren, 9.000 Mitarbeiterinnen und Mitarbeitern und 31.000 Studierenden eine der führenden technischen Universitäten Europas. Ihre Schwerpunktfelder sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften, Medizin und Wirtschaftswissenschaften. Nach zahlreichen Auszeichnungen wurde sie 2006 vom Wissenschaftsrat und der Deutschen Forschungsgemeinschaft zur Exzellenzuniversität gewählt. Das weltweite Netzwerk der TUM umfasst auch eine Dependance mit einem Forschungscampus in Singapur. Die TUM ist dem Leitbild einer unternehmerischen Universität verpflichtet.

Dr. Andreas Battenberg | Technische Universität München
Weitere Informationen:
http://www.forschung-garching.de
http://www.wsi.tum.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Stabile Quantenbits
08.12.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Goldmedaille für die praktischen Ergebnisse der Forschungsarbeit bei Nutricard

11.12.2017 | Unternehmensmeldung

Nachwuchs knackt Nüsse - Azubis der Friedhelm Loh Group für Projekte prämiert

11.12.2017 | Unternehmensmeldung

Mit 3D-Zellkulturen gegen Krebsresistenzen

11.12.2017 | Medizin Gesundheit