Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuberechnet: Der Kosmos ist 13,7 Milliarden Jahre alt

01.03.2010
Unser Universum hat 13,75 Milliarden Jahre auf dem Buckel - so lautet das Ergebnis einer neuen detaillierten Studie. Forscher der Universität Bonn haben Bilder des Hubble Space Teleskops ausgewertet, gemeinsam mit Kollegen der US-Universitäten Stanford und Kalifornien. Der Clou: Ihre Rechnung berücksichtigt mehr Faktoren als frühere Studien. Ihr Wert für das Alter des Universums kommt der Wirklichkeit daher besonders nahe. Die Ergebnisse werden in Kürze in dem Fachmagazin "Astrophysical Journal" veröffentlicht.

Das Forscherteam hat mit Hilfe so genannter Gravitationslinsen die Hubble-Konstante bestimmt. Diese beschreibt, wie schnell sich unser Universum ausdehnt. Daraus lässt sich ableiten, wie viel Zeit seit dem Urknall vergangen ist. Bisher galt die Gravitationslinsen-Methode als verhältnismäßig unpräzise.

Dr. Sherry Suyu von der Uni Bonn und ihre Kollegen konnten nun jedoch die Konstante mit einer Genauigkeit von sieben Prozent bestimmen. Für das Alter des Kosmos heißt das: "Nach unseren Berechnungen ist das Universum 13,75 Milliarden Jahre alt", so Dr. Sherry Suyu, "maximal 170 Millionen Jahre älter oder 150 Millionen Jahre jünger."

Um die Hubble-Konstante zu ermitteln, müssen die Forscher wissen, wie weit eine Galaxie von uns entfernt ist und wie schnell sie sich von uns fortbewegt. Letzteres lässt sich anhand der Rotverschiebung ermitteln: Je schneller sich eine Galaxie wegbewegt, desto stärker sind die Wellenlängen des Lichts, das von ihr ausgeht, in den rötlichen Bereich verschoben. Die absolute Entfernung der Erde zu einer fremden Galaxie zu ermitteln, ist dagegen sehr viel komplizierter.

Das internationale Team benutzte dafür eine noch relativ junge Methode: Sie betrachteten eine Galaxie - die so genannte Quelle -, die hinter zwei anderen, nah beieinander liegenden, massereichen Galaxien liegt. Die starke Gravitation dieser Galaxien krümmt den Raum. Bewegt sich Licht von der Quelle nahe an den Galaxien vorbei, wird es durch die Schwerkraft ähnlich wie von einer Linse abgelenkt. Astronomen sprechen daher auch von Gravitationslinsen.

Als Folge sehen wir die Quelle nicht einmal, sondern gleich mehrmals am Himmel, da das Licht auf unterschiedlichen Wegen um die Linsengalaxien herum zu uns gelangen kann. "In unserem Fall gab es vier Abbilder der Quelle, die ringförmig um die Linse herum erschienen", erklärt Dr. Sherry Suyu. Die Quellgalaxie selbst veränderte mit der Zeit ihre Helligkeit. Diese Helligkeitsänderung zeigte sich auch in den vier Bildern - allerdings zu unterschiedlichen Zeiten: "Die Wege, die das Licht der Quellgalaxie durch die Linse nehmen kann, sind unterschiedlich lang", sagt Sherry Suyu. "Daher hellte zuerst dieses Bild unten links auf. Etwa 30 Tage später wurde das Abbild oberhalb der Linse heller."

Aus dem Zeitunterschied zwischen den vier Bildern konnten die Astronomen die Entfernung zur Quelle ermitteln. Dr. Phil Marshall vom Kavli-Institut für Astroteilchenphysik und Kosmologie der Universität Stanford in Kalifornien erläutert: "Wenn wir wissen, wie die Linse beschaffen ist, können wir vorhersagen, wie lange das Licht der vier Bilder für seinen Weg von der Quelle durch die Linse zu uns jeweils braucht. Vergleichen wir diese Werte mit dem Zeitunterschied, den wir bei den vier flackernden Bildern tatsächlich beobachten, wissen wir, wie weit die Linsengalaxie und die Quelle von uns entfernt sind."

Erstmalig hat das Team in seine Berechnungen auch alle anderen Galaxien mit einbezogen, die zwischen der Erde und der Quelle liegen. "Ohne diese zusätzlichen Massen erhält man für die Hubble-Konstante einen zu hohen Wert", erklärt Dr. Stefan Hilbert, Dr. Suyus Kollege am Argelander-Institut. Das Universum würde dann jünger geschätzt, als es tatsächlich ist.

Forscher vor ihnen haben bei der Berechnung der Hubble-Konstante meist einfach vorausgesetzt, dass das Universum flach und nicht gekrümmt ist. Dr. Suyu und ihre Kollegen haben jetzt berechnet, dass diese Annahme tatsächlich stimmt. Und auch über die mysteriöse dunkle Energie, die das Universum immer schneller expandieren lässt, wissen sie jetzt mehr: "Unsere Berechnungen haben ergeben, dass unser Universum zu 72 Prozent aus dunkler Energie besteht, wie auch immer sie aussehen mag", sagt Dr. Suyu. "Der Rest ist die gewöhnliche Materie, die wir kennen, und Dunkle Materie, nach der unter anderem Forscher am Genfer CERN suchen."

An der Arbeit haben auch Wissenschaftler der Universität von Kalifornien und der niederländischen Universität Groningen mitgewirkt. "Unsere Analyse ist sehr viel detaillierter als andere Berechnungen zuvor", resümiert Dr. Suyu.

S. H. Suyu (AIfA, Uni Bonn), P. J. Marshall (KIPAC / UC SB), M. W. Auger (UC SB / UC Davis), S. Hilbert (AIfA, Uni Bonn), R. D. Blandford (KIPAC), L. V. E. Koopmans (Uni Groningen), C. D. Fassnacht (UC Davis), T. Treu (UC SB): Dissecting the Gravitational Lens B1608+656. II. Precision Measurements of the Hubble Constant, Spatial Curvature, and the Dark Energy Equation of State, Astrophys. J., 2010

Kontakt:
Dr. Sherry Suyu
Argelander-Institut für Astronomie der Universität Bonn
Telefon: 0228/73-6787
E-Mail: suyu@astro.uni-bonn.de

Dr. Andreas Archut | idw
Weitere Informationen:
http://www.uni-bonn.de
http://www.uni-bonn.tv/podcasts/20100126_IN_suyugravilens_V3.mp4/view

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten