Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuartiges Festkörperlaserdesign auf Basis von synthetischen Diamanten von Element Six eröffnet neue Anwendungsmöglichkeiten

14.10.2008
Forscher des Institute of Photonics an der University of Strathclyde haben die Arbeit an einem dreieinhalbjährigen Projekt zur Entwicklung eines neuartigen Festkörperlaserdesigns aufgenommen, das von Element Six Ltd. hergestellte CVD-(Chemical Vapor Deposition = Chemische Gasphasenabscheidung) Diamanten enthält. Element Six ist im Bereich der CVD-Diamantsynthese und entsprechenden Anwendungsbereichen weltweit führend.

Die Entwicklung eines Diamanten-Raman-Lasers könnte eine Vielzahl neuer Anwendungsbereiche eröffnen, beispielsweise in den Bereichen Unterwasserbildgebung, medizinische Bildgebung, Augenheilkunde, Krebsbehandlung und multispektrale Bildgebung. Das Projekt wird von Dr. Alan Kemp am Institute of Photonics der University of Strathclyde geleitet und über Subventionen in Höhe von mehr als 600.000 Britischen Pfund vom britischen, öffentlich finanzierten Engineering and Physical Sciences Research Council (EPSRC) unterstützt.

Der Einsatz von Diamanten als Festkörperlasermaterial eröffnet neue Möglichkeiten zur Entwicklung kleiner, kompakter Festkörperlaser mit grösserer Leistungsumschlagskapazität, die mit bislang nicht verfügbaren Wellenlängen betrieben werden können und so neue Anwendungsbereich eröffnen. Diamanten verfügen über eine einzigartige Kombination aus optischen und thermischen Eigenschaften durch die sie sich ausgezeichnet für diesen Anwendungsbereich eignen. Durch Verwendung des neuesten von Element Six hergestellten CVD-Einzelkristallmaterials lassen sich diese Eigenschaften instrumentalisieren. Raman-Laser wurden bereits mit Materialien wie beispielsweise Silizium entwickelt und werden heute im Telekommunikationssektor eingesetzt. Durch den Einsatz von Diamanten könnten diese Geräte auf ein höheres Leistungsniveau mit ganz neuen Wellenlängen erweitert werden.

Wie Raman-Laser funktionieren

Raman-Laser bauen auf einem 1922 entdeckten Phänomen auf, das als Raman-Streuung bezeichnet wird. Wenn Photonen auf einen Stoff treffen, interagieren einige wenige von ihnen, indem sie in den Atomen des Stoffs eine Vibration auslösen. Bei solchen "unelastischen" Kollisionen gewinnen oder verlieren die Photonen spezifische Energiemengen, was zu Licht mit einer unterschiedlichen Wellenlänge führt. Ein Raman-Laser verstärkt das Sekundärlicht, indem es dieses oszilliert und Energie in das System pumpt, um einen kohärenten Laserstrahl abzugeben.

Dieser Typ von Laser ist vor allem deshalb von Bedeutung, weil die Wellenlänge verändert werden kann. Wie Dr. Kemp sagt, bietet die Fähigkeit, die Wellenlängen zu verlagern, "Zugang zum anwendungsreichen aber derzeit quellenarmen gelb-orangen Bereich des Spektrums." Die meisten kommerziellen Laser agieren heute im nahen Infrarotbereich des Spektrums zwischen 0,8 und 1,1 Mikrometern mit einer besonders hohen Konzentration im Bereich um 1 Mikrometer (1,03 - 1,07 Mikrometer) wo der Grossteil der Hochleistungslaserarbeit erledigt wird. "Die womöglich wichtigste Herausforderung bei der Entwicklung moderner Festkörperlaser", sagt Dr. Kemp, "ist die Entdeckung von Möglichkeiten zur Generierung neuer Wellenlängen, ohne auf den Komfort und die Leistungsfähigkeit jetziger Lasergeräte verzichten zu müssen."

Potenzial synthetischer Diamanten

Darüber hinaus sind bisherige Generationen kontinuierlicher Raman-Festkörperlaser aufgrund von thermischen Problemen auf eine Leistung von wenigen Watt beschränkt. Diamanten weisen eine ausgezeichnete Wärmeleitfähigkeit und einen niedrigen Wärmeausdehnungskoeffizienten auf, was eine grössere Leistungsumschlagskapazität ermöglicht. "Das am wenigsten glamouröse aber dringendste Problem bei der Konstruktion von Lasern, vor allem wenn es um hohe Leistungen bei geringem Platzbedarf geht, ist der Umgang mit Hitze", sagt Dr. Kemp. "Dies ist vor allem bei Raman-Hochleistungslasern ein grosses Problem, weil Kristalle, die gute Raman-Wandler sind, in der Regel relativ schlechte Wärmeleiter sind. An dieser Stelle kommen Diamanten ins Spiel. Mit einer Wärmeleitfähigkeit, die um zwei bis drei Grössenordnungen besser ist als bei typischen Raman-Aktivkristallen, sollte dies ein ausgezeichnetes Raman-Medium sein, das die Generierung deutlich höherer Ausgangsleistungen ermöglicht." Darüber hinaus verlagern Diamanten die Wellenlänge ein wenig stärker als die derzeit eingesetzten Raman-Aktivkristalle, wodurch sich das Anwendungspotenzial erweitern dürfte. "Das Team am Institute of Physics hat erkannt, dass Diamanten im Vergleich zu herkömmlichen Raman-Medien über einen hohen Raman-Verstärkungskoeffizienten und eine starke Raman-Verschiebung verfügen", sagte Chris Wort, Technical Manager bei Element Six.

Eine essentielle Eigenschaft des von Element Six hergestellten Diamanten ist eine ultraniedrige Doppelbrechung. Doppelbrechung tritt auf, wenn die Geschwindigkeit des Lichts in einem Medium abweicht, wenn sich die Polarisierung des Lichts ändert. Dies muss in einem Laserresonator genau kontrolliert werden, damit der Laser korrekt funktioniert. Dr. Kemp sagte: "Die ultraniedrige Doppelbrechung der von E6 hergestellten CVD-Einzelkristalldiamanten ist ein erheblicher Fortschritt für alle Photonikanwendungen für Diamanten, vor allem in Laseranwendungen. Sie ermöglicht eine Instrumentalisierung der ausserordentlichen Eigenschaften von Diamanten, ohne andere Aspekte der Leistung des Lasers zu beeinträchtigen."

Element Six wird das Forschungsteam während der gesamten Projektdauer mit qualitativ hochwertigen CVD-Einzelkristalldiamanten versorgen. Das Institute of Photonics hat eine gute Arbeitsbeziehung mit Element Six. Die Organisationen haben zuvor an dem von der Regierung unterstützten MIDDI-Projekt zusammengearbeitet, das beispielsweise zur Möglichkeit geführt hat, Präzisionsätzungen für Mikrooptikkomponenten aus Einzelkristalldiamanten durchzuführen.

Informationen zu Element Six

Element Six ist der weltweit führende Anbieter hochwertiger Supermaterialien, die überall in der Fertigungsindustrie für eine breite Palette von Anwendungen eingesetzt werden. Das Unternehmen ist Vorreiter bei der Entwicklung synthetischer Diamanten und neuartiger technischer Werkstoffe, die bei industriellen Anwendungen, z. B. in der Optik, Mechanik, Wärmetechnik, Elektronik, im Automobilbau, in der Telekommunikation und Medizin zum Einsatz kommen. Mit einem Umsatz von über 500 Mio. USD und fast 4.000 Mitarbeitern verfügt Element Six über Produktions- und Verarbeitungsanlagen in China, Deutschland, Irland, Schweden, Südafrika, in der Ukraine und in Grossbritannien, die von einem weltweiten Vertriebsnetz ergänzt werden.

Informationen zum Institute of Photonics

Das 1995 gegründete Institute of Photonics ist eine kommerziell ausgerichtete Forschungsorganisation an der Universität Strathclyde.
Das Hauptziel des Instituts besteht darin, die Lücke zwischen akademischer Forschung und industriellen Anwendungen und Entwicklungen im Bereich der Photonik zu schliessen. Zu den Forschungsgebieten des Instituts zählen Halbleitermaterialien und -geräte, praktische Festkörperlaser, Mikro-LED-Arrays sowie eine breite Palette von Anwendungen, vor allem im Bereich der Biophotonik.

Das Institute of Photonics befindet sich am Strathclyde-Campus im Stadtzentrum Glasgows. Das IoP übernimmt Vertrags- und Kollaborationsforschungsaufträge aus der Industrie und bietet Beratungsdienste an. Viele Dr.- und Dr.ing.-Studenten studieren an der Einrichtung, welche zudem Technologien für Unternehmen lizenziert.

Weitere Informationen erhalten Sie von:

John Caldwell
Corporate Communications
Element Six
Tel: +353-(0)61460015
E-Mail: info@e6.com

Institute of Photonics
University of Strathclyde
Wolfson Centre
106 Rottenrow
Glasgow G4 0NW
Tel: +44-141-548-4120
Fax: +44-141-552-1575
E-Mail: info@photonics.ac.uk

John Caldwell | presseportal
Weitere Informationen:
http://www.photonics.ac.uk
http://www.e6.com

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie