Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuartige Stromsteuerung in einatomaren Kohlenstoffschichten

13.12.2012
Physiker aus Augsburg und Loughborough berichten in den Physical Review Letters über neue Erkenntnisse zum Verhalten und zu den Steuerungsmöglichkeiten von Ladungsträgern in einatomaren Kohlenstoffschichten.

m renommierten Fachjournal Physical Review Letters (109, 226602) berichten die Augsburger Physiker PD Dr. Wolfgang Häusler und Prof. Dr. Dr. h. c. mult. Peter Hänggi (beide Lehrstuhl für Theoretische Physik I) gemeinsam mit ihrem Kollegen Prof. Dr. Sergey E. Savel'ev von der Loughborough University über die jüngsten Ergebnisse ihrer Forschungen zu der Frage, wie Strom in Kohlenstoffschichten (Graphen) durch zeitlich veränderliche Potentialbarrieren hindurch transportiert wird.

Mit diesen Ergebnissen leisten sie einen wesentlichen Beitrag zum besseren Verständnis des Transmissionsverhaltens solcher Potentialbarrieren. Sie schaffen damit zugleich wichtige Voraussetzungen für eine Optimierung der Möglichkeiten, die an sich nur schwer manipulierbaren Graphen-Ladungsträger zu steuern, um so auf dem Weg zu einer "Graphen-basierten Elektronik" weiter voranzukommen.

Wenn es darum geht, zweidimensionale Elektronensysteme zu realisieren, gelten monoatomare Ebenen aus Kohlenstoff (Graphen) als eine der vielversprechendsten Alternativen zu den bisher in der Mikroelektronik verwendeten und nur mit hohem Aufwand zu produzierenden Halbleiter-Schichtstrukturen. Abgesehen von ihrer wesentlich einfacheren Herstellbarkeit haben Graphenschichten den Vorteil, dass ihre Elektronensysteme deutlich dünner und die Bewegungsgeschwindigkeiten der Ladungsträger deutlich schneller sind als diejenigen in Halbleitern, so dass sie kürzere Schaltzeiten erwarten lassen.

Für die Perspektive einer "Graphen-basierten Elektronik" von zentraler Bedeutung ist allerdings die Frage, welche Möglichkeiten elektrostatische Potentiale bieten, um Elektronensysteme in Graphenschichten auch bei hohen Frequenzen zu kontrollieren. Die Antworten, die sie auf diese Frage gefunden haben, geben Häusler, Hänggi und Savel'ev in dem am 30. November in den "Physical Review Letters" veröffentlichten Artikel "Current Resonances in Graphene with Time-Dependent Potential Barriers".

Seit längerem ist bekannt, dass Ladungsträger in einatomaren Kohlenstoffschichten ein äußerst ungewöhnliches "ultrarelativistisches" Bewegungsverhalten zeigen - ein Verhalten, das grob mit demjenigen von Photonen verglichen werden kann und ansonsten nur bei Geschwindigkeiten nahe der Lichtgeschwindigkeit zu beobachten ist. Dabei liegen die tatsächlichen Bewegungsgeschwindigkeiten der Graphen-Ladungsträger bei nur etwa einem Hundertstel der Lichtgeschwindigkeit und damit durchaus im Bereich des in Metallen Üblichen.

Als Folge ihres ungewöhnlichen Bewegungsverhaltens durchdringen Graphen-Elektronen statische Potentialbarrieren bei senkrechtem Auftreffen perfekt, wie entsprechende Experimente bestätigen. Dies erschwert die Steuerbarkeit der Ladungsträger erheblich, im Vergleich etwa zu "gewöhnlichen" Quantenteilchen in Halbleitern, die durch Potentialbarrieren zwar auch entkommen können, aber, bei Verwendung hoher und dicker Barrieren, eben nur mit ganz geringen Wahrscheinlichkeiten.

Dies wirft die Fragen auf, wie zeitliche Veränderungen der Potentialbarrieren die Tunnelwahrscheinlichkeiten beeinflussen und wie sich dementsprechend die Bewegungen der Ladungsträger durch die Kontrolle des Zeitverlaufes einer angelegten Gatterspannung steuern lassen. Häusler, Hänggi und Savel'ev konnten die Grundlagen für das Verständnis des Transmissionsverhaltens von Potentialbarrieren nun in zweierlei Hinsicht maßgeblich erweitern: Zum einen ermöglichen ihre Ergebnisse die Beantwortung der beiden genannten Fragen für beliebige Barrierenprofile in Verbindung mit beliebigen zeitlichen Änderungen; zum anderen lassen sich jetzt Tunnelwahrscheinlichkeiten auch für Ladungsträger berechnen, die nicht senkrecht, sondern unter beliebigen Einfallswinkeln auf die Barriere treffen. Damit ist die Voraussetzung geschaffen für eine gezielte Steuerung der Bewegungsrichtung von Graphen-Ladungsträgern, zum Beispiel durch eine entsprechende Veränderung der Frequenzen oszillierender Potentialbarrieren.

Gewissermaßen nebenbei ist das Forschertrio aus Augsburg und Loughborough auf ein interessantes, völlig unerwartetes Phänomen gestoßen, nämlich auf parallel zur Barriere laufende Ströme, die unter bestimmten Voraussetzungen sogar bei einem senkrechten Einfall des Ladungsträgers auftreten und deren theoretische Beschreibung eine verblüffende Analogie zum Josephson-Verhalten supraleitender Tunnelkontakte zeigt, obwohl Graphen natürlich nicht supraleitend ist.

Originalbeitrag:

Sergey E. Savel'ev, Wolfgang Häusler, and Peter Hänggi:
Current Resonances in Graphene with Time-Dependent Potential Barriers,
Phys. Rev. Lett. 109, 226602 (2012), http://dx.doi.org/10.1103/PhysRevLett.109.226602

Ansprechpartner an der Universität Augsburg:

PD Dr. Wolfgang Häusler
Institut für Physik der Universität Augsburg
86135 Augsburg
Telefon +49(0)821-598-3316,
wolfgang.haeusler@physik.uni-augsburg.de
http://www.physik.uni-augsburg.de/~haeusler/

Klaus P. Prem | idw
Weitere Informationen:
http://www.physik.uni-augsburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher entwickeln Methode zur Manipulation von Molekülen
28.08.2015 | Universität Leipzig

nachricht Ozeanplaneten weniger lebensfreundlich als vermutet
28.08.2015 | Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: Optische Schalter - Lernen mit Licht

Einem deutsch-französischen Team ist es gelungen, einen lichtempfindlichen Schalter für Nervenzellen zu entwickeln. Dies ermöglicht neue Einblicke in die Funktionsweise von Gedächtnis und Lernen, aber auch in die Entstehung von Krankheiten.

Lernen ist nur möglich, weil die Verknüpfungen zwischen den Nervenzellen im Gehirn fortwährend umgebaut werden: Je häufiger bestimmte Reizübertragungswege...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Membranprotein in Bern erstmals entschlüsselt

Dreidimensionale (3D) Atommodelle von Proteinen sind wichtig, um deren Funktion zu verstehen. Dies ermöglicht unter anderem die Entwicklung neuer Therapieansätze für Krankheiten. Berner Strukturbiologen ist es nun gelungen, die Struktur eines wichtigen Membranproteins zu entschlüsseln – dies gelingt relativ selten und ist eine Premiere in Bern.

Membranproteine befinden sich in den Wänden der Zellen, den Zellmembranen, und nehmen im menschlichen Körper lebenswichtige Funktionen wahr. Zu ihnen gehören...

Im Focus: Quantenbeugung an einem Hauch von Nichts

Die Quantenphysik besagt, dass sich auch massive Objekte wie Wellen verhalten und scheinbar an vielen Orten zugleich sein können. Dieses Phänomen kann nachgewiesen werden, indem man diese Materiewellen an einem Gitter beugt. Eine europäische Kollaboration hat nun erstmals die Delokalisation von massiven Molekülen an einem Gitter nachgewiesen, das nur noch eine einzige Atomlage dick ist. Dieses Experiment lotete die technischen Grenzen der Materiewellentechnologie aus und knüpft dabei an ein Gedankenexperiment von Bohr und Einstein an. Die Ergebnisse werden aktuell im Journal "Nature Nanotechnology" veröffentlicht.

Die quantenmechanische Wellennatur der Materie ist die Grundlage für viele moderne Technologien, wie z. B. die höchstauflösende Elektronenmikroskopie, die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gravitationswellen im Einsteinjahr

28.08.2015 | Veranstaltungen

Strömungen in industriellen Anlagen sichtbar gemacht

28.08.2015 | Veranstaltungen

Konzepte gegen Fachkräftemangel: Demografiekonferenz in Halle

27.08.2015 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Siemens an der Sicherheit: Lösungen für jede Anforderung

28.08.2015 | Messenachrichten

Biofabrikation von künstlichen Blutgefäßen mit Laserlicht

28.08.2015 | Biowissenschaften Chemie

Forscher entwickeln Methode zur Manipulation von Molekülen

28.08.2015 | Physik Astronomie