Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuartige Riesenmoleküle - Ultrakalte Temperaturen ermöglichen neuen Bindungstyp

22.04.2009
Die meisten Bindungen in der Natur beruhen auf der elektrostatischen Anziehung zwischen verschiedenen Teilchen: Dies reicht vom einfachen Kochsalz bis zu den Kräften, die es beispielsweise Insekten ermöglichen, an der Decke zu laufen.

Forscher des 5. Physikalischen Instituts der Universität Stuttgart erzeugten ein neuartiges Molekül, das ebenfalls von diesen Kräften zusammengehalten wird und aus zwei Atomen vom selben Element besteht. Über den ein wenig exotischen Neuling berichtet die Fachzeitschrift 'Nature' in ihrer Ausgabe vom 23. April*).

In diesem neuartigen Molekül ist eines der beiden Atome hoch angeregt: Sein äußerstes Elektron kreist auf einer Bahn mit sehr großem Durchmesser und ist nur noch schwach an den Rest des Atoms gebunden. Man bezeichnet diese hochangeregten Atome nach ihrem schwedischen Entdecker Johannes Rydberg als Rydberg-Atome und das zugehörige Elektron auch als Rydberg-Elektron. Das zweite Atom des Moleküls befindet sich im Grundzustand. Das Besondere an diesem Molekül ist sein Bindungsmechanismus: Er beruht ausschließlich auf dem Einfluss des Rydberg-Elektrons auf das zweite Atom. Es wird im elektrischen Feld des Elektrons polarisiert und dadurch an das Rydberg-Atom gebunden. Die Größe des Moleküls wird deshalb direkt durch die Umlaufbahn des Rydberg-Elektrons bestimmt. Damit zählt dieses Molekül mit einem Durchmesser von mehr als 100 Nanometern zu den größten bekannten zweiatomigen Molekülen.

Strenggenommen bewegen sich die Elektronen in einem Atom nicht auf Kreisbahnen, sondern sind entsprechend einer räumlichen Verteilung "verschmiert". In der Quantenmechanik wird diese durch die Wellenfunktion beschreiben. Vom Zentrum des Atoms ausgehend besitzt diese Verteilung abwechselnd Maxima und Minima. Dort, wo das Maximum am größten ist, ist auch die Wahrscheinlichkeit am größten, das Elektron anzutreffen. Genau hier liegt die klassische Bahn des Elektrons.

Damit sich das neu entdeckte Molekül bilden kann, muss sich genau in diesem Abstand ein Atom im Grundzustand befinden. Da die Atome in einem Gas bei Zimmertemperatur viel größere Abstände voneinander haben und sich außerdem mit Schallgeschwindigkeit bewegen, benutzten die Physiker aus der Gruppe von Tilman Pfau ein ultrakaltes Gas aus Rubidiumatomen und bestrahlten dieses mit Laserlicht. Dadurch wurde das äußere Elektron von einigen Rubidiumatomen auf eine sehr große Bahn "gehoben" und es konnten Rydberg-Atome erzeugt werden.

Charakterisierung der Moleküle
Wie lässt sich aber kontrollieren, ob dabei wirklich ein Molekül entstanden ist? Bei der Entstehung der meisten Moleküle kann der Übergang von freien Atomen zu Molekülen direkt an veränderten Eigenschaften beobachtet werden. Die Eigenschaften des neuartigen Rydberg-Moleküls werden jedoch hauptsächlich vom Rydberg-Atom bestimmt. Wegen dieser Ähnlichkeit von Atom und Molekül scheidet der konventionelle Nachweis aus. Deshalb untersuchten die Forscher um Tilman Pfau den Prozess, der zur Bildung der Moleküle führt. Für die Anregung eines Atoms in einen Rydberg-Zustand wird eine charakteristische Energie des Laserlichts benötigt. Erzeugen sie aber ein Molekül, so ändert sich diese Energie: Sie ist genau um die Bindungsenergie des Moleküls kleiner. Um also zu prüfen, ob es sich um ein Molekül oder ein einfaches Rydberg-Atom handelt, haben die Physiker die Energie ihres Lasers in kleinen Schritten verändert und die Anzahl der entstandenen Rydberg-Atome gemessen. Durch diese Methode, bei der sie die Energie ihres Lasers mit einer Genauigkeit von eins zu einer Milliarde kennen, konnten sie das neuartige Molekül erzeugen und gleichzeitig seine Bindungsenergie bestimmen.
Der erstmalige Nachweis dieses neuen Bindungsmechanismus ist eine wichtige Bestätigung einer Theorie, die diese Art von Molekülen bereits im Jahr 2000 vorhergesagt hat. Daneben haben die Physiker an diesen Molekülen aber auch den Einfluss eines Elektrons auf das Grundzustandsatom sehr isoliert studiert und erstmals quantifiziert. Damit konnten sie wichtige quantenmechanische Eigenschaften des Elements Rubidium bestimmen. Grundsätzlich können diese Moleküle nicht nur aus Rubidium, sondern aus allen Elementen gebildet werden, für die die Kraft durch ein Elektron anziehend ist, wie etwa bei den anderen Alkalimetallen. Damit ist dieser Bindungstyp auf eine Vielzahl von chemischen Elementen übertragbar.

Die Arbeit entstand im Rahmen des transregionalen Sonderforschungsbereichs SFB/TR 21 (Control of quantum correlations in tailored matter) und wurde von der Deutschen Forschungsgemeinschaft DFG, der Landesstiftung Baden-Württemberg sowie einen Gastprofessor aus Oklahoma (Humboldtstiftung) unterstützt.

*) Originalveröffentlichung: Vera Bendkowsky, Björn Butscher, Johannes Nipper, Jim P. Shaffer, Robert Löw, Tilman Pfau: Observation of ultra-long range Rydberg molecules, Preprint-Version: http://arXiv.org/abs/0809.2961

Weitere Informationen bei Prof. Tilman Pfau, 5. Physikalisches Institut,
Tel. 0711/685-68025, e-mail: t.pfau@physik.uni-stuttgart.de,
http://www.pi5.uni-stuttgart.de/forschung/rubidium2/rubidium2.html

Ursula Zitzler | idw
Weitere Informationen:
http://www.uni-stuttgart.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Berner Mars-Kamera liefert erste farbige Bilder vom Mars
26.04.2018 | Universität Bern

nachricht Belle II misst die ersten Teilchenkollisionen
26.04.2018 | Max-Planck-Institut für Physik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Konferenz »Encoding Cultures. Leben mit intelligenten Maschinen« | 27. & 28.04.2018 ZKM | Karlsruhe

26.04.2018 | Veranstaltungen

Konferenz zur Marktentwicklung von Gigabitnetzen in Deutschland

26.04.2018 | Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltrekord an der Uni Paderborn: Optische Datenübertragung mit 128 Gigabits pro Sekunde

26.04.2018 | Informationstechnologie

Multifunktionaler Mikroschwimmer transportiert Fracht und zerstört sich selbst

26.04.2018 | Biowissenschaften Chemie

Berner Mars-Kamera liefert erste farbige Bilder vom Mars

26.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics