Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuartige Radaranwendungen sollen bei der Beurteilung der Lawinengefahr helfen

25.11.2011
Forschungsprojekt von Heidelberger Wissenschaftlern mit Kollegen aus Österreich und der Schweiz

Mit neuartigen Radaranwendungen wollen Forscher der Universität Heidelberg einen Beitrag zur besseren Vorhersagbarkeit von Lawinen leisten. Damit soll in einem grenzüberschreitenden Forschungsprojekt die Beurteilung der Lawinengefahr auf eine präzisere Grundlage gestellt werden.

Der Geophysiker Dr. Olaf Eisen vom Institut für Umweltphysik der Universität Heidelberg leitet das Projekt, an dem Kollegen in Deutschland, Österreich und der Schweiz beteiligt sind. Ziel ist es, mit Hilfe von Radarsystemen und damit ohne Gefährdung von Menschen den Schneedeckenaufbau automatisch beobachten zu können, um die lokale Risikoeinschätzung der Sicherheitsverantwortlichen mit zusätzlichen Informationen zu verbessern. Das von der Deutschen Forschungsgemeinschaft (DFG) mit 200.000 Euro geförderte Projekt läuft bis Oktober 2012.

„Um Informationen zum Schneedeckenaufbau zu erhalten, werden üblicherweise Schächte in den Schnee gegraben und Schneeprofile aufgenommen“, erläutert Olaf Eisen. Da dabei aber insbesondere in steilen Hängen oft ein erhöhtes Lawinenrisiko für die Beobachter besteht, sind diese Arbeiten bei instabilen Schneedecken nur selten möglich. „Mit Hilfe unserer Forschungen wollen wir die Anwendung ferngesteuerter, aufwärts schauender Radarsysteme vorantreiben, mit denen man zerstörungsfrei und gefahrlos die lokalen physikalischen Eigenschaften der Schneedecke charakterisieren und abbilden kann“, erklärt Dr. Eisen. Neben ihm arbeitet am Institut für Umweltphysik Dr. Achim Heilig als Postdoktorand an dem Projekt „Snowpack monitoring with upward-looking radar systems towards improves avalanche risk prediction“ (MUSI) mit, das aus seiner Dissertation hervorging.

Die deutschen Forscher stellen ein auch Pulsradar genanntes Bodenradarsystem bereit, das halbautomatisch vor Ort von den Schweizer Kollegen betrieben wird und dessen Daten sie auswerten. Von einer Antenne, die sich an der Grenze zwischen Schnee und Boden befindet, breiten sich die Radarwellen nach oben aus. An Grenzschichten innerhalb der Schneedecke – etwa wenn sich Dichte oder Feuchte ändern – und an der Oberfläche des Schnees wird ein Teil der Wellen nach unten reflektiert, an einer zweiten Antenne empfangen und dann digital aufgezeichnet. „Aus den Laufzeiten der Reflexionen und deren Unterschiede lassen sich die Eigenschaften der Schneedecke ableiten“, sagt Olaf Eisen.

Neben dem Institut für Umweltphysik der Ruperto Carola in Zusammenarbeit mit dem Alfred-Wegener-Institut für Polar- und Meeresforschung in Bremerhaven sind an dem Forschungsprojekt Experten des Schweizer WSL-Instituts für Schnee- und Lawinenforschung (SLF) und der Fachhochschule JOANNEUM Kapfenberg in Österreich beteiligt. Von österreichischer Seite kommt ein weiteres Radarsystem, das nach dem sogenannten FMCW-Prinzip, dem frequenzmodulierten Dauerstrichradar, arbeitet. Die Schweizer Kollegen am Davoser Messort liefern zusätzlich zum Vergleich manuell aufgenommene Beobachtungsdaten sowie Informationen über die lokalen Witterungsverhältnisse.

Das Projekt wird im Rahmen des Programms D-A-CH von der DFG gefördert. Im D-A-CH-Konsortium unterstützt die DFG zusammen mit ihren Partnerorganisationen, dem Fonds für wissenschaftliche Forschung (FWF) in Österreich und dem Schweizerischen Nationalfonds (SNF), grenzüberschreitende Forschungsvorhaben. Unter der Adresse http://www.awi.de/en/research/young_investigators/emmy_noether_programme/limpics... sind im Internet Informationen zu dem Forschungsprojekt zusammengestellt.

Kontakt:
Dr. Olaf Eisen
Institut für Umweltphysik
Telefon (06221) 54-6393
oeisen@iup.uni-heidelberg.de
Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.awi.de
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht CAST-Projekt setzt Dunkler Materie neue Grenzen
23.05.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Heiße Materialien: Fachartikel zum pyroelektrischen Koeffizienten
23.05.2017 | Technische Universität Bergakademie Freiberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie