Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuartige Lichtquellen für die abhörsichere Telekommunikation - Photonen auf Bestellung

18.05.2009
Eine Lichtquelle, die nur ein Photon innerhalb eines kurzen Zeitintervalls emittiert, ermöglicht zahlreiche neue Anwendungen auf dem Gebiet der Quanten-Informationstechnologie.

Dazu zählen insbesondere die Entwicklung abhörsicherer Datennetze sowie Konzepte für das optische Quantencomputing. Mit modernen Herstellungsverfahren und experimentellen Untersuchungen tragen das 3. Physikalische Institut und das Institut für Halbleiteroptik und Funktionelle Grenzflächen der Universität Stuttgart maßgeblich zur Erforschung und Realisierung derartiger Lichtquellen bei. Das Bundesforschungsministerium fördert diese Arbeiten innerhalb eines Forschungsverbundes an der Universität Stuttgart mit 867.000 Euro für drei Jahre.

Solche neuartigen Lichtquellen - Fachleute bezeichnen diese als quantisierte Lichtzustände - erlauben Funktionen, die mit klassischen Lichtzuständen nicht möglich sind. So ermöglicht die Nachrichtenübertragung mit einzelnen Photonen eine abhörsichere Datenkommunikation. Der geheime Schlüssel einer Nachricht wird dabei beispielsweise über eine Polarisationskodierung der Photonen übertragen. Ein möglicher Lauschangriff scheitert an den Gesetzen der Quantenmechanik: Detektiert ein Spion die übertragenen Photonen, so wird seine Messung den unbekannten Photonenzustand in der Regel verändern. Durch die Verwendung so genannter nichtorthogonaler Zustände kann der Spion nicht den Zustand jedes Photons korrekt bestimmen, sondern nur einen zufälligen Anteil. Selbst wenn er ein Ersatzphoton für jedes ausspionierte Photon weiterschickt, das dem Resultat seiner Messung entsprechend präpariert wurde, verursacht dies beim Empfänger eine signifikant höhere Fehlerrate, aufgrund dieser ein Lauschangriff nachgewiesen werden kann. Ein erster Ansatz lässt vermuten, dass sich einzelne Photonen durch Abschwächen einer gepulsten Lichtquelle auf eine Zahl von einem Photon pro Puls realisieren lassen. Dies ist jedoch nicht möglich, da die Photonenemission klassischer Lichtquellen (Laser, Glühlampe) einer Gesetzmäßigkeit folgt, die auch bei kleinsten Lichtintensitäten die deterministische Erzeugung von einzelnen Photonen in einem Puls verhindert.

Zur Realisierung von Einzelphotonenquellen verwenden die Wissenschaftler vor allem so genannte Quantenemitter - etwa ein einzelnes angeregtes Atom, ein Molekül, ein Fehlstellenzentrum (eine Lücke im Kristallgitter in Verbindung mit Fremdatomen) oder ein Elektron-Loch Paar in einer Halbleiterstruktur. Diese können einzelne Photonen getrennt nacheinander emittieren. Eine gezielte Steuerung des Anregungsprozesses, beispielweise durch gepulste optische oder elektrische Anregung, gewährleistet, dass nur ein Photon innerhalb eines kurzen Zeitintervalls emittiert werden kann. Die zurzeit in den Forschungslaboratorien eingesetzten Einzelphotonenquellen werden den Anforderungen der Effizienz, Zuverlässigkeit und Definiertheit der Photonenemission in Bezug auf Wellenlänge, Zeitverhalten und Photonenstatistik nicht gerecht. Hinzu kommen die Komplexität, die Justageempfindlichkeit und die Größe des Aufbaus, die einen kommerziellen Einsatz solcher Quellen bisher verhindern.

Das Bundesministerium für Bildung und Forschung fördert diese Arbeiten mit dem Ziel, kompakte und kontrollierbare Einzelphotonenquellen auf Festkörperbasis zu entwickeln, innerhalb des Verbundforschungsprojekts EPHQUAM (Effiziente, kompakte und kontrollierbare Einzelphotonenquellen für die Quantenkommunikation). Beteiligt sind die Universitäten Stuttgart, die Ludwig-Maximilians-Universität München, die Universität des Saarlands, die Technische Universität Braunschweig, das Forschungszentrum Jülich und die Physikalisch-Technische Bundesanstalt in Braunschweig. Die Forscher sind zuversichtlich, dass die Entwicklung von effizienten und stabilen Quellen zur stürmischen Entwicklung der Quanteninformationswissenschaften beitragen wird.

Weitere Informationen bei Prof. Dr. Peter Michler, Institut für Halbleiteroptik und Funktionelle Grenzflächen, Universität Stuttgart, Tel. 0711/685-64660,

e-mail: peter.michler@ihfg.uni-stuttgart.de

Ursula Zitzler | idw
Weitere Informationen:
http://www.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie