Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuartige Lichtquellen für die abhörsichere Telekommunikation - Photonen auf Bestellung

18.05.2009
Eine Lichtquelle, die nur ein Photon innerhalb eines kurzen Zeitintervalls emittiert, ermöglicht zahlreiche neue Anwendungen auf dem Gebiet der Quanten-Informationstechnologie.

Dazu zählen insbesondere die Entwicklung abhörsicherer Datennetze sowie Konzepte für das optische Quantencomputing. Mit modernen Herstellungsverfahren und experimentellen Untersuchungen tragen das 3. Physikalische Institut und das Institut für Halbleiteroptik und Funktionelle Grenzflächen der Universität Stuttgart maßgeblich zur Erforschung und Realisierung derartiger Lichtquellen bei. Das Bundesforschungsministerium fördert diese Arbeiten innerhalb eines Forschungsverbundes an der Universität Stuttgart mit 867.000 Euro für drei Jahre.

Solche neuartigen Lichtquellen - Fachleute bezeichnen diese als quantisierte Lichtzustände - erlauben Funktionen, die mit klassischen Lichtzuständen nicht möglich sind. So ermöglicht die Nachrichtenübertragung mit einzelnen Photonen eine abhörsichere Datenkommunikation. Der geheime Schlüssel einer Nachricht wird dabei beispielsweise über eine Polarisationskodierung der Photonen übertragen. Ein möglicher Lauschangriff scheitert an den Gesetzen der Quantenmechanik: Detektiert ein Spion die übertragenen Photonen, so wird seine Messung den unbekannten Photonenzustand in der Regel verändern. Durch die Verwendung so genannter nichtorthogonaler Zustände kann der Spion nicht den Zustand jedes Photons korrekt bestimmen, sondern nur einen zufälligen Anteil. Selbst wenn er ein Ersatzphoton für jedes ausspionierte Photon weiterschickt, das dem Resultat seiner Messung entsprechend präpariert wurde, verursacht dies beim Empfänger eine signifikant höhere Fehlerrate, aufgrund dieser ein Lauschangriff nachgewiesen werden kann. Ein erster Ansatz lässt vermuten, dass sich einzelne Photonen durch Abschwächen einer gepulsten Lichtquelle auf eine Zahl von einem Photon pro Puls realisieren lassen. Dies ist jedoch nicht möglich, da die Photonenemission klassischer Lichtquellen (Laser, Glühlampe) einer Gesetzmäßigkeit folgt, die auch bei kleinsten Lichtintensitäten die deterministische Erzeugung von einzelnen Photonen in einem Puls verhindert.

Zur Realisierung von Einzelphotonenquellen verwenden die Wissenschaftler vor allem so genannte Quantenemitter - etwa ein einzelnes angeregtes Atom, ein Molekül, ein Fehlstellenzentrum (eine Lücke im Kristallgitter in Verbindung mit Fremdatomen) oder ein Elektron-Loch Paar in einer Halbleiterstruktur. Diese können einzelne Photonen getrennt nacheinander emittieren. Eine gezielte Steuerung des Anregungsprozesses, beispielweise durch gepulste optische oder elektrische Anregung, gewährleistet, dass nur ein Photon innerhalb eines kurzen Zeitintervalls emittiert werden kann. Die zurzeit in den Forschungslaboratorien eingesetzten Einzelphotonenquellen werden den Anforderungen der Effizienz, Zuverlässigkeit und Definiertheit der Photonenemission in Bezug auf Wellenlänge, Zeitverhalten und Photonenstatistik nicht gerecht. Hinzu kommen die Komplexität, die Justageempfindlichkeit und die Größe des Aufbaus, die einen kommerziellen Einsatz solcher Quellen bisher verhindern.

Das Bundesministerium für Bildung und Forschung fördert diese Arbeiten mit dem Ziel, kompakte und kontrollierbare Einzelphotonenquellen auf Festkörperbasis zu entwickeln, innerhalb des Verbundforschungsprojekts EPHQUAM (Effiziente, kompakte und kontrollierbare Einzelphotonenquellen für die Quantenkommunikation). Beteiligt sind die Universitäten Stuttgart, die Ludwig-Maximilians-Universität München, die Universität des Saarlands, die Technische Universität Braunschweig, das Forschungszentrum Jülich und die Physikalisch-Technische Bundesanstalt in Braunschweig. Die Forscher sind zuversichtlich, dass die Entwicklung von effizienten und stabilen Quellen zur stürmischen Entwicklung der Quanteninformationswissenschaften beitragen wird.

Weitere Informationen bei Prof. Dr. Peter Michler, Institut für Halbleiteroptik und Funktionelle Grenzflächen, Universität Stuttgart, Tel. 0711/685-64660,

e-mail: peter.michler@ihfg.uni-stuttgart.de

Ursula Zitzler | idw
Weitere Informationen:
http://www.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Fehlerfrei ins Quantencomputer-Zeitalter
18.12.2017 | Universität Innsbruck

nachricht „Carmenes“ findet ersten Planeten
18.12.2017 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Carmenes“ findet ersten Planeten

Deutsch-spanisches Forscherteam entwirft, baut und nutzt modernen Spektrografen

Seit Januar 2016 nutzt ein deutsch-spanisches Forscherteam mit Beteiligung der Universität Göttingen den modernen Spektrografen „Carmenes“ für die Suche nach...

Im Focus: Fehlerfrei ins Quantencomputer-Zeitalter

Heute verfügbare Ionenfallen-Technologien eignen sich als Basis für den Bau von großen Quantencomputern. Das zeigen Untersuchungen eines internationalen Forscherteams, deren Ergebnisse nun in der Fachzeitschrift Physical Review X veröffentlicht wurden. Die Wissenschaftler haben für Ionenfallen maßgeschneiderte Protokolle entwickelt, mit denen auftretende Fehler jederzeit entdeckt und korrigiert werden können.

Damit die heute existierenden Prototypen von Quantencomputern ihr volles Potenzial entfalten, müssen sie erstens viel größer werden, d.h. über deutlich mehr...

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neue Konfenzreihe in Berlin: Landscape 2018 - Ernährungssicherheit, Klimawandel, Nachhaltigkeit

18.12.2017 | Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Alaska bis zum Amazonas: Pflanzenmerkmale erstmals kartiert

18.12.2017 | Biowissenschaften Chemie

Krebsforschung in der Schwerelosigkeit

18.12.2017 | Biowissenschaften Chemie

Neue Konfenzreihe in Berlin: Landscape 2018 - Ernährungssicherheit, Klimawandel, Nachhaltigkeit

18.12.2017 | Veranstaltungsnachrichten