Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuartige Laser-Impulse eröffnen bislang unbekannte Wege bei Bearbeitung von Nano-Strukturen

25.04.2016

Wissenschaftler der Universität Kassel sind bei der kontrollierten Herstellung von Nanostrukturen in bislang unerreichte Regionen vorgestoßen. Mit angepassten Laser-Impulsen bohrten sie Löcher von weniger als 250 Nanometern Durchmesser, aber sieben Mikrometern Tiefe in Quarzglas. Die Ergebnisse könnten für die Entwicklung winziger optischer Filter genauso relevant werden wie in der Nano-Chirurgie.

Die Nanotechnologie eröffnet bei der Entwicklung von Elektronik, optischen Kommunikationsmitteln und der Biomedizin völlig neue Möglichkeiten. Dabei geht es um die Prägung von Strukturen, die kleiner als ein Mikrometer sind – was wiederum weniger als ein Hundertstel des Durchmessers eines Haares darstellt. Diese sogenannten Nanostrukturen verleihen Materialien Eigenschaften, die diese in einem größeren Maßstab nicht besitzen. Die Herstellung solcher Strukturen ist aber noch eine He-rausforderung, auch wenn es eine Reihe verschiedener Techniken dafür gibt.


Abbildung der anfänglich sehr kurzen Laserimpulse, die in zeitliche Airy-Impulse umgeformt und dann auf eine Quarzglasprobe fokussiert werden. Auf der rechten Seite unten ist ein Querschnitt eines tiefen Nanolochs zu sehen, das mit einem einzigen Laserschuss erzeugt wurde. Grafik: Uni Kassel.

Ein gängiger Weg, um Strukturen in ein Substrat zu schreiben, ist es, unerwünschtes Material mit Hilfe eines hochintensiven Lasers zu verdampfen. Allerdings gibt es bei diesem Verfahren bedeutende Einschränkungen. Zum einen interagieren diese Laser mit der Oberfläche der meisten Materialen. Noch wichtiger: Die Wellenlänge des Lasers gibt den minimalen Brennpunkt und damit die Größe der geprägten Strukturen vor. Für sichtbares Licht liegt diese Wellenlänge bei 400 bis 800 Nanometern – Größer als einige heute übliche Computer-Komponenten.

Physikern und Nanostrukturwissenschaftlern des Center for Interdisciplinary Nanostructure Science and Technology (CINSaT) der Universität Kassel ist es nun gelungen, Nano-Löcher in Quarzglas zu bohren, die kleiner als der Brennpunkt des verwendeten Lasers sind. Die Löcher haben einen Durchmesser von weniger als 250 Nanometer bei einer Wellenlänge von 800 Nanometern. Dabei weisen diese Löcher eine Tiefe von bis zu sieben Mikrometern auf – ein Größenverhältnis, das bei derart kleinen Strukturen auf anderem Wege kaum zu erreichen ist. „Noch nie wurden auf diese Art Löcher gebohrt, die so klein und gleichzeitig so tief sind“, freut sich Doktorandin Nadine Götte, die bei der Durchführung der Experimente federführend war. Die Forschungsergebnisse wurden jetzt mit Unterstützung des Open-Access-Publikationsfonds der Kasseler Universitätsbibliothek im renommierten Fachjournal Optica veröffentlicht.

Die Forschungsgruppe um Prof. Dr. Thomas Baumert (Leiter des Fachgebiets Experimentalphysik III - Femtosekundenspektroskopie und ultraschnelle Laserkontrolle) und Prof. Dr. Hartmut Hillmer (Leiter des Fachgebiets Technische Elektronik) benutzte Laserimpulse, die etwa eine Billionstel Sekunde lang sind. Das alleine reichte aber noch nicht aus: Mit einer selbstentwickelten Technik modellierten sie den Laserimpuls und produzierten sogenannten „zeitliche Airy-Impulse“. Einfach gesagt wird dabei nicht der kürzeste mögliche Impuls produziert, sondern einer, der eine optimale Zeitstruktur hat, um möglichst viel Energie in das Material einzubringen. Dieser Mechanismus umgeht auch das Problem, das die meisten Impulse schon an der Oberfläche des Materials absorbiert werden. Stattdessen entstehen durch gezielte Stimulation des Materials tiefe und schmale Kanäle.

Die Kasseler Wissenschaftler wollen ihre Erkenntnisse nun in Anwendungen erproben. So wollen sie testen, ob sich damit winzige Filter für die optische Datenübertragung herstellen lassen. Andere Anwendungen könnten das gezielte Durchlöchern von Zellmembranen oder die Nano-Chirurgie sein.

Originalveröffentlichung:
Götte et al Optica (2016) http://www.osapublishing.org/optica/abstract.cfm?uri=optica-3-4-389

Kontakt:
Prof. Dr. Thomas Baumert
Universität Kassel
Tel. +49-561-804-4452
E-Mail: baumert@physik.uni-kassel.de

Prof. Dr. Hartmut Hillmer
Institut für Nanostruktur und Analyse
Universität Kassel
Tel. +49-561-804-4485
E-Mail: hillmer@ina.uni-kassel.de

Weitere Informationen:

http://www.uni-kassel.de

Sebastian Mense | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik

Wie Brände die Tundra langfristig verändern

12.12.2017 | Ökologie Umwelt- Naturschutz

Gefäßregeneration: Wie sich Wunden schließen

12.12.2017 | Medizin Gesundheit